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Abstract.

A statistical approach based on the modified Bartlett-Lewis rectangular

pulses model is presented to disaggregate rainfall statistics from daily data. Six model
parameters are estimated from 24- and 48-hour accumulated rainfall data. Based on
these estimated parameters, in addition to reproducing 24- and 48-hour statistics, the
model is shown to infer 1-, 2-, 6-, and 12-hour historical statistics satisfactorily. An
upper limit for disaggregation scale (about 2 days) for this model has been identified.
This characteristic behavior of the model is related to the power law dependence of the
power spectrum for timescales smaller than 2 days. A detailed comparison between
observed and modeled statistics of rainfall data is presented for two rain gages, one
from central Italy and the other from the midwestern United States.

1. Introduction

Precipitation data is widely collected by rain gages for
nonoverlapping intervals such as seconds, minutes, hours,
days, etc. However, most of the precipitation data are
archived on a daily timescale. For hydrologic applications,
for example, in modeling rainfall-runoff transformations,
using time-dependent infiltration models, and simulating
wetland dynamics, we need rainfall data at a much finer
timescale. Recently, methods of disaggregating daily rainfall
into shorter time periods have been proposed [e.g., Srikan-
than and McMahon, 1985; Hershenhorn and Woolhiser,
1987; Econopouly et al., 1990]. These models attempt to
disaggregate daily rainfall into sequences of showers. How-
ever, they require dozens of parameters to disaggregate daily
rainfall into individual storms. In this paper we present a
different approach to disaggregate daily rainfall into a se-
quence of storms. Instead of trying to reproduce the specific
rainfall events, we attempt to capture the statistics of finer-
scale (e.g., 1 and 2 hours) rainfall from the observed daily
rainfall statistics. Once the parameters are estimated, we can
simulate the sequence of rainfall events at any desired
timescale (e.g., from seconds to days). Our approach is
based on a point process model developed and modified by
Rodriguez-Iturbe et al. [1987 and 1988]. Using finer-
resolution rainfall data, this model has been shown to
capture temporal and spatial structure of rainfall [Islam et
al., 1990; Onof and Wheater, 1993]. In this paper we will
investigate the disaggregation properties of this model.
Here, disaggregation is used in reference to using daily
accumulated rainfall statistics to infer finer-scale statistics,
while aggregation refers to using finer-scale (1 and 2 hours)
statistics to infer daily rainfall statistics. Specifically, we
want to address the following two questions in this paper:
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1. Can we use readily available daily rainfall data to infer
the finer-timescale (e.g., hourly) statistics?

2. Can we identify any specific structure of the modified
Bartlett-Lewis rectangular pulses model (MBRPM) that ex-
plains the model’s ability (or inability) to disaggregate rain-
fall statistics at various temporal scales?

A brief description of the model structure and the expres-
sions for second-order moments is presented in section 2.
Two data sets used for this study are described in section 3.
Parameter estimation methodology and measures of good-
ness of fit are described in section 4. In section 5 the power
spectrum of the rainfall model is derived and used to explain
the results of disaggregation procedure. Concluding remarks
are given in section 6.

2. Model Description

For this study, we use a point process based stochastic
model of rainfall [Rodriguez-Iturbe et al., 1987, 1988; Islam
et al., 1990]. This model, commonly known as the Bartlett-
Lewis rectangular pulses rainfall model, is based on a
cluster-based Poisson arrival process of storm origins with a
rate A. Each storm is characterized by a random number of
cells C (C = 1), and each storm origin is followed by a
Poisson arrival, at rate B8, of cell origins. The intervals
between successive cells are independent and identically
distributed random variables. The candidate for this distri-
bution is an exponential distribution with rate y until the
process of cell origin ends. Each cell itself is a rectangular
pulse of random height (intensity) and width (duration). The
cell duration has an exponential distribution with parameter
7. For mathematical convenience, two dimensionless pa-
rameters k = B/mand ¢ = y/nare introduced. The number of
cells per storm, C, thus has a geometric distribution of mean
me = 1 + k/¢. The original Bartlett-Lewis model is
extended by Rodriguez-Iturbe et al. [1988] to capture the
observed higher degree of correlation between the duration
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of cells within a single storm and to better reproduce the
probability of zero rainfall. In the extended model, known as
the modified Bartlett-Lewis model, the cell duration param-
eter 7 is taken to be a random variable that changes from
storm to storm. The probability density function for 7 is
assumed to be a two-parameter (a and ») gamma distribution
with shape parameter a. Each cell depth is a random
constant exponentially distributed with mean E[x]. All the
random variables defining the process are assumed to be
mutually independent. Following Rodriguez-Iturbe et al.
[1987, 1988], the second-order properties of the accumulated
process over the time interval 7, Y™ for the modified
Bartlett-Lewis rainfall model are summarized below:
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3. Description of Data

For this study, two sets of data are analyzed: one from the
Arno basin in central Italy and the other from Paducah,
Kentucky. Previously, this model was used to analyze
rainfall statistics for the Ammo basin in an aggregation mode
[Islam et al., 1990]. The emphasis on this paper is in
quantifying the ability of the model to disaggregate rainfall
statistics. Thus analysis of rainfall data from the Arno basin
would allow us to compare the adequacy of the model in
aggregation and disaggregation modes.

In a recent study, Hawk and Eagleson [1992] analyzed
over 70 rain gages from the United States to estimate
parameters for the MBRPM and found that only the esti-
mated parameters for Paducah were inconsistent with sur-
rounding station values. They attributed this inconsistency
to erroneous data entry for Paducah. Here, we plan to
explore this inconsistency with the Paducah data further. We
speculate that apparent inconsistency in the Hawk and
Eagleson [1992] analysis for Paducah might have resulted
from the nonunique nature of nonlinear parameter estima-
tion procedure. In fact, we show in the following sections
that our procedure satisfactorily reproduces historical statis-
tics for Paducah in both aggregation and disaggregation
modes and provides consistent parameter values.

The rain gage from central Italy is located in Borgo, in the
Arno River basin. The Arno basin is composed of a cluster of
sediment-filled lakes that are connected by steep gorges.
Approximately 7000 km? of the basin is bounded by the
Apennine Mountain range. Generally, elevation increases
eastward away from the Mediterranean coast. The complex
climatological phenomena observed in the Mediterranean
basin are significantly affected by the intensity and distribu-
tion of the large-scale pressure systems over the area. These
systems interact with the local topography and are strongly
influenced by the supply of latent energy from the sea. An
important aspect of Mediterranean meteorology is the differ-
ence in air and sea temperatures. Mediterranean water is
warmer than Atlantic water throughout the year. The pres-
ence of island barriers in the Mediterranean serves as 2
precondition for strong cyclogenesis causing most rainfall
over the Arno basin between late fall and early spring.
November being the wettest month. The summer months,
especially July, are the driest owing to the dominance of the
Azores high-pressure cell. Twenty-four years (January 1,
1962, to December 31, 1985) of hourly precipitation data are
used from this rain gage.
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Figure 1la.

Paducah is a small town in the midwestern United States
located near the border of Missouri and Kentucky in a region
consisting of mostly rolling plains and grassland. Although
Paducah experiences more rainfall than Borgo in spring, the
probability of zero rainfall is consistently higher in Paducah
for the entire year. January is the driest month in this
Midwestern region, while April is the wettest month possibly
because of the northern progression of southern storm
fronts. Twenty years (January 1, 1970, to December 31,
1989) of hourly precipitation data are used from this station.

Figures 1a, 1b, 2, and 3 show the monthly variation of
mean, standard deviation, coefficient of variation, and zero
rainfall probability, respectively, for the historical daily
rainfall sequence for both Borgo and Paducah. A quick
analysis of these figures reveals that although yearly mean
rainfall is comparable in these two stations, there are signif-
icant differences in other rainfall characteristics. For exam-
ple, Paducah has consistently higher probability of zero
rainfall for the entire year, implying that on average, the
storms at Paducah produce more rainfall per storm. Stan-
dard deviation of rainfall is more pronounced in Paducah
compared with Borgo across all seasons. However, the
coefficient of variation is comparable for both stations.

4. Parameter Estimation and Measures
of Goodness of Fit

The modified Bartlett-Lewis rectangular pulses rainfall
model described in section 2 has six parameters: A, E[x], a,
v, k, and ¢. The parameters are estimated using the method

month

Seasonal variation of mean for the historical daily rainfall sequence for Borgo and Paducah.

of moments [Valdez et al., 1985; Islam et al., 1990]. We have
four theoretical expressions (mean, variance, autocorrela-
tion, and probability of zero rainfall); however, (1) through
(4) involve a combination of six model parameters, implying
that there are six unknowns and four equations. Except for
the mean, these moments are nonlinear functions of accu-
mulation level T. Therefore a combination of these four
historical statistics at six accumulation levels would produce
24 equations. As was mentioned before, mean rainfall is a
linear function of the accumulation level T, and therefore it
cannot be used more than once. Thus we are left with 19
equations and six unknowns. However, we use six equations
to estimate six model parameters using method of moments.
Estimates of various combinations of first- and second-order
statistics from historical precipitation time series may be
equated to their theoretical expressions. This results in a set
of six highly nonlinear equations with six unknowns. A
minimum least squares technique is employed to obtain an
estimate of the six model parameters. Let F(X) be the set of
nonlinear equations in parameter vector X. In theory, that
vector should be equal to the moments of the observation
vector @. Then,

FX)-0=0 (6)

where F(X) is the best estimate of ®. To eliminate the bias
due to orders of magnitude difference in the value of @, it is
convenient to normalize every F(X) by the corresponding ®
value. Now the solution of (6) may be obtained through a
simple unconstrained nonlinear minimization:
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Figure 1b. Seasonal variation of standard deviation for the historical daily rainfall sequence for Borgo
and Paducah.
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Figure 2. Seasonal variation of coefficient of deviation for the historical daily rainfall sequence for Borgo
and Paducah.
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Parameters are estimated for each month, assuming local
stationarity within the month. Tables 1, 2, and 3 show
historical and model-reproduced statistics for the cumulative
precipitation in Borgo, Italy, at different levels of accumu-
lation for both the aggregation (Table 2) and disaggregation
(Table 3) procedure. Clearly, in the aggregation process,
finer-scale (1 and 2 hours) statistics are reproduced better
than coarser-scale (24 and 48 hours) statistics primarily
because we have used some of the finer-scale moments to
estimate the parameters. Conversely, in the disaggregation
process, coarser-scale statistics are reproduced better. It is
worthwhile to note here that only six moments are used in
the estimation of parameters. Nevertheless, it appears that
at least qualitatively observed statistics at all levels of
accumulation are preserved in a satisfactory manner for
aggregation as well as disaggregation. Tables 46 show
similar comparisons for Paducah.

To quantify the adequacy of disaggregation and aggrega-
tion procedure in reproducing the historical statistics, we
introduce a set of new measures of goodness of fit that
accounts for the error between observed and model-fitted
quantities for different levels of accumulation. Since mean is
a linear function of parameters at all accumulation levels, it

(Fl(x) _

x |\ &

is usually reproduced fairly well by the model under almost
all circumstances. Therefore we use the other three mo-
ments to measure the goodness of fit. These measures are
defined as
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where i 1-, 2-, 6-, 12-, 24-, and 48-hour accumulation
level. N refers to the total number of accumulation levels,
which is six in our case:
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where j = 1, 2, and 3 refer to autocorrelation at correspond-
ing lags.
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where F, F,, and F; refer to measures of goodness of fit for
variance, autocorrelation, and probability of zero rainfall,
respectively. The measures of goodness of fit for variance,
autocorrelation, and probability of zero rainfall are pre-
sented in Figures 4, 5, and 6, respectively, for Borgo and
Paducah. Figure 4 shows that the historical variance is
reproduced fairly well in both locations. It is interesting to
note that the fit is extremely good (less than 5% error) for the
months of highest variability (November in Borgo and April
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Table 1. Historical Statistics of Cumulative Precipitation at Various Levels: Borgo, Italy, November 1-30, 1962-1985

Mean, Variance,
Hour mm mm? Corx(1) Corr(2) Corr(3) Prob(0)
1 0.18 0.81 0.58 0.41 0.33 0.83
2 0.36 2.57 0.53 0.34 0.24 0.80
6 1.07 14.81 0.44 0.18 0.06 0.70
12 2.14 43.59 0.28 0.04 0.03 0.62
24 428 108.36 0.18 -0.01 0.01 0.47
48 8.58 242.48 0.12 0.05 0.00 0.30

Table 2. Model-Estimated Statistics of Cumulative Precipitation by Aggregation: Borgo, Italy, November 1-30, 1962-

1985
Mean, Variance,
Hour mm mm? Corr(1) Corr(2) Corr(3) Prob(0)
1 0.18* 0.80* 0.62* 0.33 0.21 0.83*
2 0.36 2.58+ 0.46 0.19 0.11 0.81*
6 1.07 13.41 0.27 0.09 0.05 0.73
12 2.14 33.96 0.20 0.05 0.02 0.63
24 4.27 81.14 0.13 0.02 0.01 0.47
48 8.54 183.64 0.08 0.00 0.00 0.27

Estimated parameters are A = 0.0235 hours, v = 5.3957, a = 6.4481, E[x] = 2.6615 mm h™!, ¢ = 0.1186, and « = 0.2221.

*Moments used for parameter estimation.

Table 3. Model-Estimated Statistics of Cumulative Precipitation by Disaggregation: Borgo, Italy, November 1-30,

1962-1985
Mean, Variance,
Hour mm mm? Corr(1) Corr(2) Corr(3) Prob(0)
1 0.18 1.06 0.64 0.35 0.21 0.74
2 0.36 3.47 0.47 0.18 0.09 0.73
6 1.07 18.18 0.25 0.07 0.04 0.67
12 2.13 45.25 0.17 0.05 0.03 0.60
24 4.27* 106.13* 0.13* 0.03 0.02 0.47*
48 8.54 240.28* 0.10 0.01 0.00 0.30%

Estimated parameters are A = 0.0188 hours, » = 5.8191, a = 5.8878, E[x] = 3.6440 mm h™!, ¢ = 0.0708, and « = 0.0836.

*Moments used for parameter estimation.

Table 4. Historical Statistics of Cumulative Precipitation at Various Levels: Paducah, Kentucky, November 1-30,

1970-1989
Mean, Variance,
Hour mm mm? Corr(1) Corr(2) Corr(3) Prob(0)
1 0.16 0.97 0.46 0.29 0.21 0.96
2 0.32 2.80 0.43 0.22 0.17 0.94
6 0.97 14.19 0.34 0.11 0.10 0.88
12 1.94 38.90 0.25 0.07 0.01 0.82
24 3.88 101.93 0.15 —-0.05 0.05 0.73
48 7.76 229.11 0.03 0.07 —0.01 0.55

Table 5. Model-Estimated Statistics of Cumulative Precipitation by Aggregation: Paducah, Kentucky, November 1-30,

1970-1989
Mean, Variance,
Hour mm mm? Corr(1) Corr(2) Corr(3) Prob(0)
1 0.16* 0.96* 0.46* 0.35 0.27 0.95%
2 0.32 2.81* 0.49 0.30 0.18 0.94*
6 0.96 15.56 0.35 0.09 0.03 0.89
12 1.92 42.00 0.21 0.02 0.00 0.83
24 3.84 101.38 0.10 0.00 0.00 0.73
48 7.68 223.35 0.05 0.00 0.00 0.55

Estimated parameters are A = 0.0100 hours, » = 4.7806, « = 30.5887, E[x] = 5.9149 mm hour, ¢ = 0.0307, and x = 0.4905.

*Moments used for parameter estimation.



BO ET AL.: AGGREGATION-DISAGGREGATION PROPERTIES OF A MODEL

3429

Table 6. Model-Estimated Statistics of Cumulative Precipitation by Disaggregation: Paducah, Kentucky, November

1-30, 1970-1989

Mean, Variance,
Hour mm mm? Corr(1) Corr(2) Corr(3) Prob(0)
1 0.16 1.07 0.36 0.23 0.20 0.93
2 0.32 2.91 0.38 0.26 0.19 0.92
6 0.97 14.59 0.37 0.15 0.06 0.87
12 1.94 39.87 0.27 0.05 0.01 0.82
24 3.87* 101.05* 0.15* 0.01 0.00 0.72*
48 7.74 231.87* 0.07 0.00 0.00 0.56*

Estimated parameters are A = 0.0107 hour, v = 5.7004, & = 30.4587, E[x] = 7.3266 mm h~!, ¢ = 0.0295, and « = 0.2840.

*Moments used for parameter estimation.

in Paducah). Figure 5 shows satisfactory goodness of fit for
correlation. The difference between the observed and fitted
correlation range between 0.04 and 0.14 with no seasonal or
geographical structure. On average, the model captures the
probability of zero rainfall for Paducah with less than 3%
error (Figure 6) for the entire year. For Borgo, errors are less
than 5% except for the month of March, when error goes as
high as 10%.

Thus it is clear that in all three goodness of fit measures,
the disaggregation procedures perform very well. Now let us
compare the performance measures for aggregation and
disaggregation. Figures 7 and 8 compare the goodness of fit
for variance for Paducah and Borgo, respectively. From
Figure 7 it would appear that the disaggregation procedure
consistently outperforms the aggregation model in reproduc-
ing historical variance; however, Figure 8 shows a rather

mixed performance. Similar results (not shown here for
brevity) are also obtained for other two goodness of fit
measures. Therefore one may reasonably claim that using
readily available daily rainfall data, the model can reproduce
finer-scale statistics.

Now, to illustrate the physical realism of the estimated
parameters in the disaggregation model, let us briefly exam-
ine two important model characteristics: arrival time be-
tween storms and storm duration. Figure 9 shows the
seasonal variability in the arrival time between storms (A ~1);
it is evident that storms are more frequent in Borgo than in
Paducah throughout the year. Figure 10 shows the average
length of storm duration as a function of time of year. On an
average, Borgo experiences storms with longer duration.
These two model characteristics are consistent with the
observed probability of zero rainfall as shown in Figure 3.

0.10

goodness o fil for varlance

month

Figure 4. Goodness of fit for variance through the year.
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Figure 8. Comparison of goodness of fit for variance between aggregation and disaggregation in Borgo.
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Figure 9. Arrival time between storms (A™1) through the year for Borgo and Paducah.

Figure 10, Storm duration through the year for Borgo and Paducah.
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Furthermore, for all seasons the model-produced storm
durations are within a physically reasonable range. For
previty of presentation we have shown results from two rain
gages only; however, analyses of rainfall data from several
other stations from Denver, Colorado, and the Arno basin in
Italy (E. Elathir, unpublished manuscript, 1994) provide
evidence of applicability of this model, in aggregation as well
as disaggregation modes, to a variety of rainfall regimes.

5. The Power Spectrum for
the Bartlett-Lewis Model

From the analysis of section 4, we find that the modified
Bartlett-Lewis model is capable of disaggregating rainfall
statistics from a daily timescale to hourly scale. To better
understand this self-consistent aspect of the model, we will
now look at the power spectral density function of the
model. Here, self-consistency implies that even after using
information from a coarser timescale, the model is able to
reproduce historical statistics at finer timescales. The term
power spectral density function is often shortened to power
spectrum. The power spectrum is a frequency decomposi-
tion of the variance of a process. It reflects the contribution
of each frequency to the overall variability of the process. If
the power spectrum does not show any preferential frequen-
cies but depicts a tendency to link a wide range of frequen-
cies, one might argue that the model variability is arising
from a wide range of frequencies and the model should be
able to aggregate and disaggregate rainfall at various tempo-
ral scales. Mathematically, the power spectrum is defined as
the Fourier transform of the autocovariance function as
follows:

=g [

yUs)eTds  O0<w<eo  (11)

where
vy¥(s) = Cov [YT(2), YT(z + )]

where -y%(s) is the autocovariance function for an aggrega-
tion level T as defined in (3). Realizing that y?(s) is an even
function, we may write (11) as follows:

o) = 2 jw y¥(s) cos ws ds (12)

I J,
Equation (12) defines the power spectrum for all positive w
for a given level of accumulation T. Equation (12) implies an
integration over an infinite time lag for the autocovariance
function. For all practical purposes, the autocovariance
function goes to zero within a finite number of lags. Thus we
approximate (12) by summing it over 50 lags. In all cases we
tested, the autocovariance function becomes insignificant

within 20 lags. A numerical approximation of (12) may be
written as

50

2 y¥(k) cos wk

k=0

o) = 2 (13)
“Tn

Itis sometimes useful to use a normalized form of the power
spectrum, i.e., (13) is normalized by the variance of the
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process. Therefore cumulative area under the normalized
power spectrum will be unity. An important parameter for
the power spectrum function for the modified Bartlett-Lewis
model is the shape parameter . When o approaches to 2, the
power spectrum resembles the fractional Gaussian noise
process of Mandelbrot and Wallis [1968]. On the other hand,
for a > 3, correlation decays very rapidly.

Figure 11 shows the normalized power spectrum in aggre-
gation and disaggregation modes for hourly accumulation
scale. For the power spectrum, parameters used are from
Borgo for November (Tables 2 and 3). Clearly, there are no
preferential frequencies where the power is concentrated.
Instead, the power is distributed across a range of frequen-
cies. However, it is interesting to note that the power
spectrum is essentially flat (i.e., the underlying process is a
random noise with no temporal structure) for frequencies
less than the storm arrival rate. This implies that variability
at timescales greater than the storm arrival rate is due to the
independent arrival of storm centers. For the analyzed
stations, 2 days (A = 0.0208 hours 1) is near the temporal
scales that separate within-storm structured variability and
between-storm independent variability. Figure 12 shows the
dependence of power spectrum on the storm arrival rate. For
timescales greater than 2 days there is no derivable informa-
tion because the spectrum essentially resembles a white
noise spectrum.

As we can see from Figure 11, the power spectrum for
hourly accumulation level in both aggregation and disaggre-
gation models has very similar structures. Thus although
aggregation and disaggregation procedures provide different
set of estimated parameters, the underlying variability struc-
ture is well preserved through both the models. This leads us
to speculate that the structure of the model is self-consistent
for upscaling (aggregation) or downscaling (disaggregation)
of rainfall statistics for the temporal scales between hours
and 2 days. Although we have not shown it from the data,
given the structure of the power spectrum, it is quite possible
that this model will be able to disaggregate rainfall statistics
to minute level from daily level. We are currently exploring
this possibility using fine-scale rainfall data.

Although the analytical form of the power spectrum is
quite complex, on the basis of the power spectrum structure
it can be approximated as follows:

Aw) =Sy
Rw) = folw/w)7*

In words, the power spectrum is approximated to have a
horizontal part connected with an inclined line having a
constant slope k. The transition between the horizontal part
and the inclined one is controlled by the timescale T (=
1/@,). Based on this approximation, to capture the whole
spectrum, it is sufficient to have information from timescales
T, < T, such that the slope k can be estimated. Indeed, as
was shown through the goodness of fit tests (section 4),
statistics at finer scales can be inferred from daily level
statistics. The key feature that makes disaggregation and
aggregation possible is the power law dependence of the
power spectrum for timescales smaller than T,. Therefore
one can speculate that the model will perform poorly in
disaggregating rainfall when calibrated with information at
timescales larger than T,.

(1)<(01

(14)

W =0,
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Figure 11. The normalized power spectrum in aggregation and disaggregation modes for hourly level in
November for Borgo.
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Figure 12. The dependence of power spectrum on the storm arrival rate.
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6. Concluding Remarks

Finer-timescale rainfall data is required for a variety of
hydrologic applications. However, most of the routinely
collected rainfall data are archived on a daily timescale. In
this paper, we use a point process rainfall model to aggregate
and disaggregate rainfall statistics at different timescales.

To quantify the adequacy of aggregation and disaggrega-
tion procedure in reproducing historical statistics, we intro-
duce a set of new measures of goodness of fit for variance,
autocorrelation, and probability of zero rainfall at different
levels of accumulation. Based on the results of two rainfall
stations, we find that using readily available daily rainfall
data, the modified Bartlett-Lewis Rectangular Pulses Model
can reproduce finer-timescale rainfall statistics.

An explanation based on the structure of the power
spectrum is proposed for the adequacy of the aggregation
and disaggregation properties of the model. It appears that
approximately a 2-day timescale separates the interstorm
and intrastorm variabilities. Since the power spectrum is
essentially flat for timescales greater than 2 days, finer-scale
statistics cannot be obtained from aggregation levels greater
than 2 days. However, the model can disaggregate to very
fine scale statistics using the information from daily accumu-
lation levels. This characteristic behavior of the model is
related to the power law dependence of the power spectrum
for timescales smaller than 2 days.

A natural extension of this work will be to investigate the
similarities between the observed and model-produced
power spectra. If the observed spectrum can be approxi-
mated by the proposed three-parameter model, then it can be
used to aggregate and disaggregate rainfall for timescales
shorter than 2 days.
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