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ABSTRACT

This paper presents a three-dimensional stochastic linear model of the mesoscale circulation induced by the
variability of turbulent sensible heat flux over land surface. The primitive equations relating wind field, geo-
potential, and potential temperature are formulated as a system of stochastic partial differential equations and
solved analytically. The solution is based on spectral representations of homogeneous random fields. The flow
intensity is found to be proportional to the standard deviation of the turbulent sensible heat flux into the atmo-
sphere. Large (small) scales of spatial variability in the surface heating preferably impact circulations at high
(low) altitudes. The mesoscale fluxes associated with the atmospheric flow are related to explicit functions of
atmospheric stability, variance of turbulent heat flux, and synoptic wind. The authors find that the vertical
momentum flux is significant in the presence of synoptic wind and that the flow perpendicular to the direction
of the synoptic wind is responsible for this momentum flux. The proposed linear theory identifies the synoptic
conditions under which the land-surface heterogeneity may play a role in atmospheric circulations at the meso-

scale.

1. Introduction

Natural variability in vegetation cover and soil types
over large areas induces variability in turbulent heat
fluxes into the atmosphere. These nonuniform heat
fluxes often exhibit irregular patterns with length scales
ranging from meters to hundreds of kilometers. In some
cases, surface temperature differences of about 10°C
are observed over distances of 10—20 km (Segal et al.
1988), and more than 200 W m~? differences in sen-
sible heat flux are observed over similar distances (Sun
and Mahrt 1994). Satellite observations demonstrate
that these thermal heterogeneities are also evident over
larger scales (e.g., Segal et al. 1988; Pielke et al. 1991).
Such heterogeneity of the land surface is expected to
induce mesoscale circulations analogous to a sea
breeze. Rabin et al. (1990) suggest that under some
synoptic conditions land-surface heterogeneities may
have a significant impact on the mesoscale circulations.

In recent years, there has been increasing interest in
the characterization of the impact of variability of land
surface on the dynamics of the mesoscale circulation
and the associated energy and mass transport in large-
scale atmospheric models. Theoretical approaches
(e.g., Rotunno 1983; Dalu and Piekle 1989; Dalu et al.
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1991) and numerical simulations (e.g., Avissar and
Pielke 1989; Avissar and Chen 1993; Lynn et al.
1995a,b) have argued that the intensity of the meso-
scale circulation induced by the thermal heterogeneity
of land surface could be as strong as the sea breeze and
that the associated mesoscale heat flux can be as large
as the turbulent heat flux.

Rotunno (1983) developed a two-dimensional linear
land- and sea-breeze model to investigate the atmo-
spheric response to the periodic diurnal cycle of heating
and cooling due to the contrast between land and sea.
His paper provides a good review of the theoretical
studies of sea breeze up to the early 1980s. He showed
that the flow is either of elliptic or of hyperbolic type
depending on the latitude. The 30° latitude is identified
as the boundary dividing the two regimes. Dalu and
Pielke (1989, 1993) and Dalu et al. (1991) extended
Rotunno’s work to study the effects of the nonperiodic
forcing and the effects of friction. For a realistic mag-
nitude of friction, they found that only an elliptic so-
lution is possible. The vertical heat flux generated by
the landscape-induced mesoscale circulation has been
shown to be of the same order as the diabatic sensible
heat flux. The previous analytical studies do not deal
with the issue of water balance of the atmosphere.

In this paper a stochastic linear theory is developed
to investigate the conditions under which the thermally
induced mesoscale circulations and the associated
mesoscale fluxes are important. A 3D linearized dy-
namic system, including the effects of a constant syn-
optic wind, is formulated to model the mesoscale cir-
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culation driven by the diabatic heating due to the tur-
bulent sensible heat flux. The variable sensible heat flux
over the land surface is described by a 2D homoge-
neous random field. Wind velocity components, pres-
sure, temperature, and moisture content vary randomly
in response to the random surface heating. Hence they
can be expressed using spectral representations of ho-
mogeneous random fields. The temporal and vertical
distributions of these state variables are related to the
parameters characterizing the synoptic environments
through the governing equations for the atmospheric
flows. The intensities of the mesoscale circulation and
the mesoscale fluxes are computed using an analytical
solution of the stochastic partial differential equations
relating the wind velocities, pressure, temperature, and
moisture content to the random diabatic forcing.

Three major improvements over the previous ana-
lytical work have been achieved in the stochastic linear
theory presented in this paper. First, a three-dimen-
sional model is adopted. All the aforementioned theo-
retical studies utilize two-dimensional models. Second,
the thermal inhomogeneity of land surface in our 3D
model is characterized by a 2D random field that re-
alistically represents the complexity of natural land-
scape. This is in contrast to the oversimplified land-
scape patterns, in the form of periodic warm—cool
stripes, that were assumed by previous studies. Third,
the effects of synoptic wind are studied quantitatively.
To our knowledge, this issue has not been addressed in
previously published analytical work. As we will show
in the following, an advantage of the 3D model is that
it can predict the vertical momentum flux (resulting
from the wind component perpendicular to the synoptic
wind) in the presence of synoptic wind while 2D mod-
els cannot. The analytical results from our 3D stochas-
tic linear theory can be used directly in parameteriza-
tion of the subgrid energy and mass transport in the
large-scale atmospheric models.

Modeling of the 3D atmospheric flow and the statistical
characterization of the thermal variability of the landscape
are presented in section 2. The analytical solution of the
governing equations will be given in section 3. Statistics
of the mesoscale circulation are then discussed in section
4. The stochastic equation of water balance of atmosphere
will be derived in section 5. The properties of the meso-
scale fluxes will be discussed in section 6. Summary and
conclusions are made in section 7.

Notations and variables are specified in appendix A.
Detailed mathematical derivations also appear in the
appendixes.

2. Stochastic modeling of 3D atmospheric flow

a. Governing equations

The two-dimensional linear land- and sea-breeze
model of Rotunno (1983) and Dalu and Pielke (1989)
is generalized to three dimensions, in the presence of
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synoptic wind, to describe the flow driven by the gra-
dients of diabatic heating caused by variability of the
land surface. The model equations are

Ou du o

EHO_E’;_ﬁ,:_a-au (1)
%+uo? fu—_-—%?~av (2)
o uo%%_b__—%?—aw (3)
%+u0%+N2w=Q(x,y,z,t)—ab (4)
%+%+%‘—;=0, (s)

where u, v, and w are wind components in the x, y, and
z directions. The term b is the buoyancy, ¢ is the geo-
potential, fis the Coriolis parameter, @~ (~O(T,),
Dalu et al. 1989) is the damping timescale of Rayleigh
friction (momentum and heat dissipation; Hsu 1987),
and N is the Brunt—Viisidld frequency. Term Q is the
buoyancy source (the time rate of change of the accel-
eration of parcel forced by the air density difference)
due to the turbulent sensible heat flux, H,,

g_OH,
pCpBO 0z ’
where p is the air density, 6, is the constant reference
potential temperature, Cp is the heat capacity of the air

at the constant pressure, and g is the gravitational ac-
celeration.

Q=- (6)

b. Statistical description of the diabatic heating

Consider a mesoscale domain covered by a variety
of vegetation or wet and dry patches of irregular pat-
terns whose dimensions are small relative to the domain
size. This situation allows the turbulent sensible heat
flux (diabatic heating), H,, at the surface to be modeled
as a two-dimensional homogeneous random field. Here
H, is further assumed to decay upward in an exponen-
tial fashion with a constant e-folding height # (~1 km).
This vertical profile of H, has been also represented by
a straight line within the convective boundary layer.
The use of exponential functions has advantages for the
theoretical framework presented in this paper: captur-
ing the fundamental feature of the reality (turbulent
sensible heat flux decaying upward with certain scale)
and mathematical simplicity essential to illuminate the
rationale of the underlying physics and make the ana-
Iytical solution feasible. This exponential function has
been used in the theoretical study by Rotunno (1983)
and is qualitatively consistent with numerical simula-
tions of turbulent heat flux (e.g., Avissar and Chen
1993; Lynn et al. 1995b). We found that the quanti-
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tative properties of the mesoscale circulation and fluxes
do not sensitively depend on the shape of the vertical
profile of H,. (The results are available, but not pre-
sented here.) The heat flux H, has a diurnal cycle fol-
lowing closely the insolation curve I(¢). This is due to
the fact that the turbulent heat flux is almost in-phase
with solar radiation as corroborated by many observa-
tional studies (e.g., Smith et al. 1992). Therefore, H,
is modeled as

Ht=I:1(x,)’)CXP<_%>I(f), (7)

where A (W m™2) is a random function characterizing
the thermal variability of land surface that will be spec-
ified in section 3. Hence the buoyancy source @ due to
H, can be written in terms of

A z
Q=0(x,y) exp(—z>1(t), (8)
where Q (m s7) relates to A through
A g
= H.
) oCoboh 9)

Assuming I:{ ~ 102Wm™, 6, ~ 300K, and & ~ 10?3
m leads to Q being on the order of 107> m s 72,
The insolation curve /() is defined by

sin(Q2), 0 =<t =< T,/2 (daytime
uoz{ Q) o/2 (daytime)

10)
0, To/2 <t < Ty (night),

where () is the rotation rate of the earth, and T, is
one day.

3. Analytical solution
a. Decomposition and the spectral representation

Randomness in the buoyancy source @ makes all
dependent variables in Egs. (1) through (5) random.
Given the linearity of the governing equations it is safe
to assume that if the external forcing of the flow is
homogeneous horizontally so will be the dependent
variables.

The first step in the solution of the system of sto-
chastic differential equations is to decompose the de-
pendent variables and the buoyancy source into their
horizontal domain mean and a perturbation term around
the mean:

u=a+u' (11)
v=T+ v’ (12)
w=w+w' (13)
dp=0¢+¢ (14)
b=b+b' (15)
0=0+0" (16)
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The linear dynamic system for the state variables u,
v, w, b, and ¢ also implies that the perturbation terms
()’ are decoupled from the mean (). They both sat-
isfy the governing Eqgs. (1) through (5). From now on
we focus only on the perturbation terms.

Using spectral representation (Yaglom 1987), the
perturbation terms u’, v’, w', b', ¢', and O’ can be
expressed as

u' = J: J.:) el TtRNGZ (ki kyiz, t) (17)
v = f:o f:o e RNAZ (ki, kay 2, 1) (18)
W' = f:, f: e BN G7 (K ki z, 1) (19)
b = fi f: e BN g7, (ks z, 1) (20)
o= | ewmaz ki n @

Q’=f f e A7, (ki ko), (22)

where dZ,, dZ,, dZ,, dZ,, dZ;, and dZ, are the ran-
dom variables in the frequency domain (k,, k) corre-
sponding to u’, v’, w’, b’, ', and Q' in the physical
domain (x, y). Here dZ, has a prescribed spectral den-
sity function, So(k;, k;), characterizing the thermal
variability of the land surface

E[|dZg(ki, k>)|*]

UéSQ(kl, k) = dk.dk s
14K,

(23)

where o, is proportional to o according to (9). Here
oy is the standard deviation of the turbulent heat flux
into the atmosphere at the time of maximum solar ra-
diation at the ground. It is a measure of the variability
in the turbulent sensible heat flux from the land surface.

b. Governing equations in the frequency domain

The governing equations for dZ can be readily de-
rived by substituting Eqs. (17) through (22) into Egs.
(1) through (5), resulting in

(g; +a+ ikluo) (dZ,) ~ f(dZ,) = ~iki(dZ,) (24)

<-§—t +a+ ikluo)(dzu) +f(dZ,) = ~ik:(dZy) (25)

) . __9
(8_t + o+ zk1u0>(dZw) - dZ) = 5 (dZy) (26)
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5; T ot ik )(dZ,) + N*(dZ,)

— It) exp(— %)(dzw (27)
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¢. Solution for the dZs
The analytical solution of the Egs. (24) through (28)

with the proper initial and boundary conditions is
shown below, while the detailed derivation is given in

appendix B.

iki(dZ,) + iky(dZ,) + g;(dZw) =0. (28)

1) When N # f,

dz, = {];—:%}21—21—\,—2 [exp(—— z) — %[kh exp(—%kz)jllo(t; Uy, @)
2 kh [ ekl (1, € o, &) — flohI(1, €; g, @)
_WT?FﬁLCWMG@WHQ e ¢ﬁ%% (29)
k,h N N
dz, = —i{ffz—:f—klz_h—zxﬁ [exp(— %) - }"kh exp(— ‘7 kz) ]Io(t; Uy, @)
2 kh koL, (2, & o, @) + flahL (¢, & g, o)
+ 2B [ costaciencie St ¢ Lrbis s}dzg (30)
21,2 b .
iz, = “{%T’ijzﬁf sin(sz(g))é(—’A’f—’_—“g;—“)dg}dzg (31)
k2h2N? N
= {[on(3) # 7w (o0 -7) - oe( - 7)) Jocs o
2 k2h2N2 b . Ic(ta é; Ug, a)
_;TtiaatmMMG@D7§7j?§;d4d% (32)
_£2
dZy = h{FT{T}FNE [exp(— i—) — ;—Ykh exp(— ;It\—[kz>]lo(t; Uy, A)
2 kh 2_f2 7 ,
s kzhzf cos (kG (§))G(€) & < ’;2 S §§”° @) f}dzg- (33)
2) When N = f, '
dz, =m {exp( Z) — kh exp(— zk)} {kihL (2, f5 uo, @)
+ kZh[IO(ty Up, a) _Ic(t’f; Uy, a)])dZQ (34)
dZz, =;(1—_lk’271—2;{ex ( h) kh exp(—zk)}{kzhlx(t,f; Uy, @)
— kAl L(t; wo, o) — L.(2, fs ug, @) }dZy  (35)
23,2
dz, = —f(—l’f_hTzhz—) {exp( ) ~ exp(— kz)}I:(t,f; o, @)dZp (36)
| dz, = {exp(— z)lo(t Uy, a) + th [exp >
- exp(—zk)] [Io(t; ug, @) — I.(2, f; ug, a)]}dZQ (37)
dZ, = - = {exp(—— —) — kh exp( zk)}lo(t Uo, @)dZg, (38)
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where

[a,b] = [min{f, N}, max{f, N}] (39)

f2 - k2h2N2

2 L -
M=o (40)

N2 — g2 12

6 = |7 1)

In(t; ug, @) = J:)I(’T) expl—(a + ki) (t — 7))dT
(42)

I(t, & up, ) = fo I(7) sin[§(z — 7)]
X expl[— (& + ikiuo)(t — 7)]1dT  (43)
I.(t, & up, a) = fo I(7) cos[&(t — 7)]

X exp[—(a + ikiuo)(t — 7)]1d7. (44)

The term ¢ is a dummy integration variable, and I(?)
is given in (10). The other symbols are specified in
appendix A.

For the sake of brevity, we rewrite the solution given
in (29) through (38) as

dZ, = I1(ki, kz; 2, t)dZy (45)
dZ, = 11,(ki, ky; 2, 1)dZ, (46)
dZ, = I1(ki, ky; 2, t)dZ, 47)
dZ, = y(k, kz; 7, 1)dZ, (48)
dZ, = 11y(ky, kys 2, 1)dZy. (49)

4. Statistics of the mesoscale circulation

In the framework of stochastic analysis the intensity
of the mesoscale circulation can be quantified by the
standard deviation (square root of the variance) o, 7,
and o,, of the wind velocities u, v, and w, respectively.
They characterize the magnitude of the perturbation in
wind velocities. The horizontal distribution of the
mesoscale circulation can be characterized by the
length scales. For instance, the length scale of vertical
velocity w provides a measure of the size of a typical
circulation cell. In the frequency domain these length
scales correspond to wavenumbers around which a
large portion of the variance concentrates. The length
scale L is equal to the inverse of the wavenumber k
multiplied by 2.

a. Properties of o;

The flow intensity is basically determined by the pa-
rameters characterizing the synoptic environment and
the thermal properties of the landscape. Significant
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land-breeze circulation is expected to be associated
with a sufficiently large thermal gradient. Atmospheric
stability provides a resistance against the upward mo-
tion of the air forced by diabatic heating. Strong syn-
optic wind tends to smooth out the locally generated
flow structures. The analytical solution in the previous
section enables us to investigate the effects of these
parameters quantitatively.

The variances can be computed from Eqgs. (45)
through (47) as

oi(z, 1) = f f E[|dZ/|*)dk,dk,

=f f |TT; (ky, kos 2, t)izaé

X So(ki, k)dk,dk,, (50)
where the index i represents u, v, w. This equation pre-
dicts a linear relationship between the flow intensity o;
and the thermal gradient o, or og. In the following
analysis it is convenient to normalize o; by op.

To compute o; using (50), the functional form of
So(k1, ky) needs to be specified. In principle Sy (ki , k)
must be estimated from the measurement of sensible
heat flux at the surface over the region of interest. For
the purpose of illustration we may use a hypothetical
So function of uniform distribution over a finite fre-
quency domain. The study by André et al. (1990)
showed that nonhomogeneous landscape with charac-
teristic horizontal scale smaller than 10 km induces no
apparent coherent atmospheric response. This result
suggests a higher wavenumber cutoff in S,. The lower
wavenumber cutoff should correspond to a length scale
not too large compared to the mesoscale domain size
(~500 km). Otherwise the assumption of homogeneity
of the random field of surface heating could be invalid.
Based on the above considerations, the thermal vari-
ability is assumed to have the length scale ranging from
20 to 50 km, imposing a high and a low wavenumber
cutoff in the (k;, k,) domain.

First we investigate the role of synoptic wind u, on
o; under the conditions of neutral stratification (N
= 0). Vertical distributions of ¢,,, 0,, and o, are plotted
in Fig. 1. Their time behavior is illustrated in Fig. 2.
Comparing o; with u, = 0 in Fig. 1 with that with u,
= 5m s~ in Fig. 3, we see the presence of the synoptic
wind strongly inhibits the development of the flow.
Here o0, decreases by a factor of 30 as the synoptic wind
u, increases from 0 to 5 m s . Hence, in an environ-
ment with moderate to strong synoptic wind the meso-
scale circulation driven by the differential surface heat-
ing is very weak.

Stable stratification of the atmosphere affects not
only the flow intensity but also the height below which
the thermally induced air flow is active. Figure 4 shows
that o, and o, decrease by a factor of 10 as N increases
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Fic. 1. Vertical profiles of standard deviation of wind velocities (a) o,, (b) ., and (¢) o,, (m s7')
normalized by o (W m™2) in the case of N = 0, u; = 0 and @ = 1.2Q at £ = 1500 LT.

from 0 to 1072 s™!. At the same time o,, decreases by
a factor of 200! Also the height of ¢* moves from
1800 m down to about 200 m. The flow in such an
environment is constrained within a shallow layer near
the surface. The stable atmosphere substantially re-
duces the intensity and the vertical range of the meso-
scale circulation. Consequently, the associated meso-
scale fluxes of momentum, heat, and moisture are also
suppressed.

Rayleigh friction affects both intensity and structure
of the mesoscale circulation. As « decreases from 1.2€2
to zero, the intensity of the flow will increase by a fac-
tor of three. Without the dissipation (« = 0) our results
show a nonphysical second circulation peak during the
nighttime when there is no solar radiation. These results
are not presented.

Comparing Figs. 1, 2, and 3 with Figs. 3 and 8 in
Avissar and Chen (1993), we find that general features
of the distributions of the horizontal mean mesoscale
kinetic energy per unit mass (MKE), (o2 + 02)/2,
predicted by this stochastic linear theory are consistent
with those obtained using the sophisticated mesoscale
numerical model. For example, their numerical simu-
lations show that the peak MKE occurs at about 1500
LT. Our theory (see Fig. 2) gives the same result. We

note that MKE is zero at z = 0 in the numerical sim-
ulations, while nonzero from our theory. This differ-
ence is caused by the boundary conditions. In the tur-
bulent atmospheric circulation model wind speed at the
ground usually is set to be zero because of viscosity.
In our linear theory the effect of viscosity is neglected.

We conclude that stability N and synoptic wind u,
significantly inhibit the development of the mesoscale
circulation caused by the thermal inhomogeneity of the
landscape. The flow will not develop to a significant
level except in a synoptic environment characterized
by a neutral stratification and weak synoptic wind.

b. Properties of the spatial length scale

The length scale of the thermally induced mesoscale
circulation will be studied by analyzing the frequency
response function (a term borrowed from system anal-
ysis) I1; in Eqgs. (45)—(47). The frequency response
function fully characterizes the input—output relation
of a linear dynamic system when the power is decom-
posed over frequencies. For the case of zero synoptic
wind, I1,, depends only on the radius wavenumber k,
implying an isotropic field of -vertical velocity w.
Hence the scale analysis of the flow is facilitated by
studying the properties of IT,, for u, = O.
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FIG. 2. The z—¢ distribution of (a) o,/oy, (b) 0,/0y, and (¢) g, /oy With N = 0,
uy = 0, and @ = 1.292. Here ¢ is the time after sunrise.

A common feature of IL, for all altitudes is that it
goes to zero as wavenumber k goes to zero (Fig. 5).
This means the thermal heterogeneity with sufficiently
large-scale L (very small thermal gradient) is ineffi-
cient in driving the land-breeze-type flow in the 3D
domain. On the other hand, I, behaves differently as
a function of wavenumber k at different altitudes. At
low altitude, for example z = 0.1 km, II,, (Fig. 5) ini-
tially increases with the wavenumber k, then saturates
at k ~ 50, corresponding to a length scale L =~ 0.1 km.
At z = 1 km, I1,, behaves similarly but the saturation
point moves from k =~ 50 down to k =~ 5. Consequently
the corresponding length scale L increases from 0.1 km
to about 1 km. Hence at relatively low altitude the at-
mosphere has little response to the thermal forcing with
large length scales. However, at higher altitudes, IT,
reaches a maximum at certain finite wavenumber, k,,,, .

With increasing altitude, the peak of II, becomes
sharper, and k., becomes smaller. The atmosphere is
most sensitive to the thermal forcing at this particular
wavenumber k,, . This behavior could be interpretated
as a resonance phenomenon in many dynamic systems.
Mesoscale circulation is likely to be observed when the
length scale of the forcing is close to the inherent length
scale of the mesoscale system. Due to the rapid decay
of diabatic heating upward, the forcing needs to be
more concentrated around this inherent scale of the
mesoscale system so that the mesoscale flow can be
driven to a deeper depth. The graph in Fig. 5b shows
the dependence of k., on altitude z. The L, — z re-
lation is plotted in Fig. 6.

The dependence of I1,, T1,, and T1, on & turns out to
be similar to that of I1, except that they vanish as k
goes to infinity. There exist certain wavenumbers (or
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FI1G. 3. Same as Fig. 1 except uy = Sms™.

length scales) at which these |I1| functions have peaks.
This property implies that the land-surface heteroge-
neity at certain scales is most effective in driving the
mesoscale circulation and fluxes. Influences of land-
scape variability at very large as well as very small
scales on the mesoscale circulation are minimum ac-
cording to our stochastic linear theory.

In summary, the atmosphere at lower altitude re-
sponds to the thermal forcing with small length scales,
while at higher altitude it tends to be driven by the
forcing with large length scale.

5. Water balance in the atmosphere
a. Governing equations

As a first-order approximation we ignore the effect
of the latent heat released by the condensation of the
water vapor on the atmospheric flow. Thus moisture is
assumed to be a passive tracer. The water balance in
the atmosphere without precipitation simply states that
the total water content g (kg kg™') is conserved fol-
lowing the flow:

99

0 0 0
o1 fa(utﬁ + 5(1)(1) + éz(wq) =0, (51)

1

where u, v, and w are the 3D wind velocities described
by Egs. (1) through (5).

Using the same arguments as for u, v, w, b, and ¢,
the random field g is assumed homogeneous horizon-
tally. As we did in section 3a, g is decomposed into the
domain mean 4 and the perturbation term g’

9=q+4q', (52)

where ¢’ is expressed with the aid of the spectral rep-
resentation of homogeneous random field as

q, - f f ei“‘l"*"”)qu(kl, kz; 2, t), (53)

The governing equation for ¢’ can be derived by
linearizing Eq. (51). The detailed derivation is shown
in appendix C. We have
= O,

’ d_
e I (54)

Ot Ox dz
where g is the mean vertical profile of the moisture in
the atmosphere.
The governing equation for dZ, in the frequency do-
main is obtained by substituting Eq. (53 ) into Eq. (54):

dq(z)

dz,,.
dz

0
o (dZ,) + ikwue(dZ,) = — (55) .
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FIG. 4. Same as Fig. 1 except N = 107257

b. Analytical solution the analytical solution of dZ, can be shown as

) follows.
Analogous to the procedure used in appendix B

for the solution of dZ,, dZ,, dZ,, dZ,, and dZ,, 1) When N # f,

_ dq(2) K*h? _ZY\ _ _ 2 aN1/2) f2 2N—1/2
qu - dZ {(fZ + a2) * k2h2(N2 + a2) [exp( h) -eXP( kZ(N +a ) (f +a ) )
” 2 kh ([P EI(2, & ug, ) + al(t, &; up, @)
X ot o, 0) = = kthL sin(zkG(£)) e T o) dg}dzg. (56)

2) When N = f,
_ dg(2) k?h? AN
=" {(f2+a2)(1—k2h2) [e"p< h) exp Zk)]

X [lo(t; uo, 0) = 1.(¢, f; uo, @) — %Is(tvf; Uo, a)]}ng- (37)

' Again, we write (56) and (57) in a short form 6. Mesoscale fluxes
_494(2) . Many recent numerical studies have argued that heat
z, = dz M,k ks 2, DdZo. (58) fluxes associated the thermally induced flow may be
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I, (k;z, by

-0.5 .
log(k) (1/km)

0 0.5 1

FIG. 5. (a) The k dependence of |IL(k; z, £){? at z = 0.1-, 1.0-, and 5.0-km altitude and
(b) z — logk distribution of log(|I1,,|?) for N = 0, uy = 0, and @ = 1.2Q at ¢ = 1500 LT.

comparable to the turbulent heat fluxes under the same
synoptic conditions. Next we attempt to study the in-
tensity and the spatial—temporal patterns of the meso-
scale fluxes of momentum, heat, and moisture using the
analytical solutions obtained in the previous section.
Mesoscale vertical fluxes of momentum M7, and
M3, sensible heat H,,, and moisture E,, are defined by
Avissar and Chen (1993) and Lynn et al. (1995b) as

M =w'u' (59)
M =w'v' (60)
H,=w'8’ (61)
E,=w'q", (62)

where the overbar represents (horizontal) domain av-
erage, and 8’ is related to buoyancy b’ in the following
way

8
0" =~=b".
8
In the frequency domain, this relation is
0
dZ, = = dz,.
4

Using the analytical solution of dZ's given in section
3c, these domain-averaged primed terms can be re-
placed by the ensemble mean in the frequency domain
(k1, k) using Eqgs. (45) through (48):
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M’ri,(z,f)=f f EldZ.(ki, ks 2, 1)

X dZ ¥(ky, kp; z, 1)]

= f I |TL,(ky, ka3 2, 1)

X ¥ (ky, ka3 2, D)) 0 pSp(ky, ko) dk dk,
(63)

an(z,t)=f f E[dZ,(ki, k»; z, 1)

X dZ *¥(ky, ky; 7, £)]

.—.f J- ‘Hw(kl, kZ;Zy t)

X H;k(kl, kz, Z, t)lO'ZQSQ(kl, kQ)dkldkz
(64)

Hm(Z,t)=f J. E[dZ,(ki, k; z, 1)

X dZ g (ky, ky; z, )]

=f f Inw(kl,kz;z, 1)

x 5 (ki ks 2, 1| 05So(ki, ky)dk dk,
(65)

Em(z,t)=f f E[dZ,(ki, k23 2, 1)

X dZ ¥(ky, ky; 2, 1)]

={f f |TL.(ky, kys 2, t)

X T1#(ky, ko3 2, ) |0 5So (ks kz)dkldkz}

% dti(z).

dz (66)

a. Momentum fluxes

It has already been found using a 2D model (Dalu
and Pielke 1993) that mesoscale momentum flux is
zero in the absence of synoptic wind. Our 3D linear
stochastic model also predicts a zero momentum flux
in the absence of synoptic wind. However, in the pres-
ence of a moderate synoptic wind u, our 3D model
predicts that the mesoscale momentum fluxes will no
longer be zero. The vertical structure of the momentum
fluxes M7, and M3, in the neutral atmosphere (N = 0)
are computed from Egs. (63) and (64) and plotted in
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10 T -

= z : : :
é 5 .......... .. .~.. ..........
= : : .

FiG. 6. Plot of L, = 27/kmay, Where ko, is the wavenumber
at which |II,|? in Fig. 5 reaches the maximum.

Fig. 7a. We note that the momentum flux associated
with the horizontal wind in the direction of synoptic
wind u, is zero. The nonzero momentum flux is due to
the horizontal wind perpendicular to the direction of
the synoptic wind. This property of momentum flux is
fundamentally different from that of momentum flux
(if any) predicted by 2D models. Given a reasonable
value of oy =~ 50 W m™2 (see Fig. 4 of Lynn et al.
1995b), M3, is on the order of 8 X 107> X 50 = 0.2
m? s 72, considerably larger than the typical value of
the turbulent momentum flux (0.05 m* s ~?) according
to Stull (1988). This significant difference between the
mesoscale momentum flux and the turbulent momen-
tum flux indicates that the transport of momentum from
the synoptic flow to the locally generated mesoscale
flow could be much stronger than that due to the surface
friction. The evident mesoscale momentum flux also
sheds some light on the interaction between the circu-
lation at large scale and the organized flow at meso-
scale. Fig. 7b shows that the strongest mesoscale mo-
mentum transport occurs in the afternoon, about 9
hours after sunrise. In the lower atmosphere, the mo-
mentum flux is downward (negative), while above a
certain altitude it becomes upward (positive ) as shown
in Fig. 7.

Based on the previous discussion, a strong synoptic
wind will eventually eliminate the flow structure and
consequently the momentum flux. Therefore, we ex-
pect the maximum momentum flux should be associ-
ated with a moderate value of the synoptic wind. The
dependence of M3, on u, is plotted in Fig. 8. Term
M3, increases with the synoptic wind up to uy =~ 0.5
m s}, then decreases at a slower rate.

Prediction of the momentum flux demonstrates one
of the advantages of the 3D model. The existing 2D
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FiG. 7. (a) Vertical profiles of momentum fluxes M%/c% (dashed
line) and M2, /0% (solid line) at t = 1500 LT and (b) z—t distribution
of M2 /o% with uy = 1 ms™" and o = 1.20Q. Here ¢ is the time after
sunrise (0600 LT).

linear models may not be able to predict the existence
of the momentum flux even when the synoptic wind
factor is included in the governing equations because
the momentum flux is caused by the wind component
perpendicular to the synoptic wind. Another implica-
tion of this behavior is that prediction of momentum
flux (if any) by 2D models may result from the as-
sumption of a 2D flow configuration (always 3D in the
real world) rather than from the underlying physical
mechanism of the processes.
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b. Heat flux

The vertical distribution of the mesoscale heat flux
H,, is plotted in Fig. 9a in the case of neutral stability
and zero-synoptic wind. It can be seen that H,, could
be as large as the turbulent heat flux H, at the surface.
Using the same value of o as above, the maximum
mesoscale heat flux H, from Fig. 9b is about 502
%X 0.06 = 150 W m~2, which is comparable to the typ-
ical turbulent heat flux in the boundary layer. Figure 9b
shows that the maximum H,, occurs at 1500 LT.

Synoptic wind strongly inhibits the mesoscale trans-
port of heat away from the surface. Under the condition
of slight synoptic wind (1, = 1 ms™"), H, will de-
crease by a factor of 10 (see Fig. 11a). Friction plays
a key role in determining the structure and timing of
H,. Without friction, H, will be positive (upward
transport of heat) until 2100 LT. Then H,, becomes
negative up to 0600 LT (sunrise) the next day. During
this period of time, a downward transport of heat (non-
physical) is associated with the flow. This is due to the
fact that there is no heat sink in the atmosphere so that
the heat released from the surface accumnulates.

The qualitative properties of H,, are also consistent
with the numerical simulations of Lynn et al. (1995b)
such as the timing of the peak H,, and the altitude at
which H,, reaches maximum. It should not be surprising
to see the discrepancies in the magnitude of H,, because
different land-surface conditions and different param-
eters such as Rayleigh friction coefficient a are used.

¢. Moisture flux

Equating the expression within the brackets on the
right-hand side of (66) to the mesoscale moisture dif-

z (km)
N w »H [4,] PN ~ o]

Y (m s

Fic. 8. Vertical distribution of momentum flux M}/ varying
with synoptic wind u,, where N = 0, & = 1.22 at 1500 LT or 9 hours
after sunrise.
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FiG. 9. (a) Vertical profile of heat flux H,,/o} at t = 1500 LT and
(b) z~t distribution of H,/c% in the case of N = 0, up = 0, and «
= 1.2Q. Term ¢ is the time after sunrise (0600 LT).

fusion coefficient — D,,(z, t), the mesoscale moisture
flux E,, can be expressed as

dg(z)
dz

Our 3D linear theory predicts that the mesoscale mois-
ture flux is proportional to the gradient of the mean
moisture distribution. This expression is formally sim-
ilar to the turbulent moisture flux where the diffusion
coefficient is due to the turbulent nature of the flow.
However, the turbulent diffusion coefficient has to be

E, = —D,(z, 1) (67)
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determined from either measurements or numerical
simulations because no analytical solution of turbulent
flow has been found so far. The mesoscale moisture
diffusion coefficient D,, is obtained analytically under
the linearity assumption.

The vertical structure and the z — ¢ distribution of
D,, is computed under the conditions of neutral strati-
fication; zero-synoptic wind are illustrated in Figs. 10a
and 10b, respectively. The impact of synoptic wind on
D,, is even stronger than that on H,, discussed previ-

()
10 - . — —
9.
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7t W
6r 4
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& |
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3t
2f 1
1t 4
0 4 I T —_— L
0 5 10 15 20 25 30
D./o}
®)
10 —r ~—
St 10
8-
.
~ 6r 1
&4
N
af
3r
2r 1
b
0 -

t (hr)

FiG. 10. (a) Vertical profile of the mesoscale diffusion coefficient
D,.Jo% at t = 1500 LT and (b) z— distribution of D,,/c% in the case
of N=0, u; =0, and a = 1.2Q. Here ¢ is the time after sunrise (0600
LT).
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ously. As the synoptic wind u, incredses from 0 to 1
ms~!, D, is reduced by a factor of 25 (see Fig. 11b),
Notice that the maximum D,, occurs at a level that is
the same as that of vertical velocity (Fig. 1c) but dif-
ferent from that of H,, (Fig. 9a). This is due to the fact
that water vapor in our linear theory is a passive trace.
Hence water vapor basically follows the circulation
patterns characterized by the distribution of vertical ve-
locity, o,,. On the other hand, vertical transport of heat
is determined jointly by the diabatic heating source Q
and the vertical velocity w. That is why the structures
of vertical transport of heat and moisture are not iden-

(@)

-
o

z (km)
M W A D N o ©

)
10 . - . —
gt 0 1o
ol .
7.
~~ 6-
E s
N
4_
-0.2
3.
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0 : . . -
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FIG. 11. (a) Same as Fig. 9b except u, = 1 m s™! and
(b) same as Fig. 10b except up = 1 m s~

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 53, No. 22

tical. Here H,, depends in a nonlinear way on the mean
potential temperature profile characterized by N, while
D,, is independent of the mean profile of moisture,
7(z), shown in Eq. (67).

Two main assumptions are inherent in deriving E,,
in Eq. (67): no source of moisture (e.g., soil evapo-
ration) in the atmosphere and no precipitation by con-
densation. Both of them are the direct consequences of
the linearization of the water balance described by Eq.
(51). Therefore, this linear theory is unable to deal with
the formation of cloud and rainfall that inevitably in-
volves nonlinear analysis.

7. Summary and conclusions

In this paper a three-dimensional stochastic linéar
theory of mesoscale circulation induced by thermal het-
erogeneity of the land surface is developed. The equa-
tions of atmospheric flow are formulated as a set of
linear stochastic partial differential equations (SPDEs)
driven by randomly variable diabatic heating due to
turbulent sensible heat flux from the surface. The
SPDEs have been solved analytically.

The intensity of the thermally induced mesoscale cir-
culation is shown to be proportional to the standard
deviation of the turbulent sensible heat flux at the sur-
face. In the lower atmosphere the thermal variability of
landscape at smaller length scales is more efficient in
triggering convection, while at higher altitudes the at-
mospheric dynamics are more sensitive to thermal forc-
ing at longer length scales. The atmosphere from bot-
tom to top behaves as a low-pass filter to the thermal
variability of the landscape.

Mesoscale fluxes of momentum, heat, and moisture
are found to be proportional to the variance of the tur-
bulent sensible heat flux at the surface. It turns out that
the mesoscale vertical flux of momentum is insignifi-
cant in the absence of synoptic wind. A nonzero mo-
mentum flux is associated with the presence of synoptic
wind. It increases as the synoptic wind goes from zero
up to a rather small value (~0.5 m s™!) and then de-
creases af a slower rate. Only the flow perpendicular to
the direction of synoptic wind contributes to this mo-
mentum flux. This is the reason why 2D linear models
may not be able to predict a mesoscale momentum flux.
We have shown, according to this linear theory, that
mesoscale heat flux could be comparable, under con-
ditions of small synoptic wind and neutral stratification,
to the surface turbulent sensible flux, as found from
many numerical simulations. The vertical structure of
mesoscale heat flux from this 3D linear model is in
good agreement with results obtained using sophisti-
cated 3D mesoscale numerical models (e.g., Avissar
and Chen 1993; Lynn et al. 1995a,b). The moisture
flux predicted by this 3D linear model is proportional
to the vertical gradient of mean moisture profile. The
mesoscale diffusion coefficient follows the structure of
flow closely since the moisture is treated as a passive
tracer.
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Stable stratification and synoptic wind strongly in-
hibit the development of the thermally induced meso-
scale circulation and hence reduce drastically the as-
sociated mesoscale transport of momentum, heat, and
moisture. Our results indicate that mesoscale fluxes, in
this linear framework, are important only in the envi-
ronments with neutral stratification and very weak syn-
optic wind.

Appropriate observational datasets that can be used
directly to verify our theory are not currently available.
The major problem with the existing datasets is that
they have insufficient spatial coverage (see, e.g., Sun
and Mahrt 1994) or do have sufficient spatial coverage
but do not have enough spatial resolution; hence they
do not meet our need. Therefore, a new field experi-
ment is being designed and hopefully will be launched
in the near future.
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National Science Foundation under Grants EAR-
9120386 and ATM-9020832.

APPENDIX A
List of Symbols

b Buoyancy

Ce Specific heat capacity of the air at constant
pressure

E, Mesoscale moisture flux

f Coriolis parameter { =22 siny)

H, Mesoscale sensible heat flux

H, Turbulent sensible heat flux

h Vertical scale of diabatic heating (taken to
be 1 km in this paper)

i Pure imaginary number v—1

k Radius wavenumber (k% + k3)'/?

ki, ks, Wavenumber in x and y direction

L Length scale

M., M3, Mesoscale momentum fluxes associated
with u and v

N Constant Brunt—Viisila frequency

q Water content of the air

Qo Buoyancy source due to diabatic heating

r Radius distance (x? + y?)!/?

S(ky, k) Spectral density function

t Time

To Length of a day (24 hours)

U, v, w Wind velocity in x, y, and z direction

Uy Constant synoptic wind in x direction

X,y Horizontal coordinates

z Vertical coordinate (z is normalized by &
in all figures)

Inverse of linear damping timescale

Potential temperature

Density of air

Variance

Geopotential

Latitnde

€S Q°T R

ET AL 3363
Q Rotation rate of the earth (=2n/T)
E[ 1] Ensemble average (mathematical expecta-
_ tion)
) Horizontal domain average
( H* Complex conjugate

APPENDIX B
Approach to the Solution

Denote the Laplace operator by £, ;, where ¢ is the
independent variable that the Laplace transform refers
to, £, {f(2)} = F(s). Then we may express

L {dZ,(ky, ki 2, 1)} = Ulhky, kos 2, 5)
Lo AdZ,(ki, k2, 8)) = V(ky, ka; 2, )
L {dZ, (ki ko2, 8)) = W(ki, ka3 2, 8)
L AdZ, ki, ki 2, )} = Bk, kas 2, 5)
“Bt,s{dz¢(k1a kysz,t)} = i)(kl, ky; 2, 8),
and
Lo { Ui, ka3 2, )} = Ulky, kas p, )
Lo (Vki, k3 2,5)} = V(ki, ki p, 5)
Lo AWk, k23 2,5)} = W(ki, ka3 p, 5)
L, {B(k, ky;2,5)} = Bk, ka3 p, 5)
,Bz,p{ti)(k,, ky; z,5)} = ®(ky, ka; p, 5).

Laplace transforms of Eqs. (24) through (28) with re-
spect to ¢ lead to

(s + a + ikjug) U — fV = —ik,® (68)
(s + a + ikug)V + fU = —ik,d (69)
L o
(s+a+ik1uo)W—B=—59—— (70)
0z
(S + a + ikluo)B~ + N2W
= I(s) exp(— i—)dzg (1)
ik,U + ik,V + ow_ 0, (72)
0z
where, according to (10),
I(sy = £,,{1(2)}
L L (73)

12 exp(—ns/Q) s + Q*°

Laplace transforms of Egs. (68) through (72) with re-
spect to z result in

(s + a + ikju)U — fV = —ik,® (74)
(s + a + ikiuy)V + fU = —ik;® (75)
(s + @ + ikug)W — B = —p® + $(0,s) (76)
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(s + a + ikyug)B + N*W = i(s)p dzZ, (17

1

+ 1/h
ik U + i,V + pW = W(0, s), (78)
where the boundary conditions W (0, s) and (0, ) are
determined such that all the perturbation terms vanish
as the vertical coordinate z goes to infinity and vertical
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w'l= = 0. (80)

Performing Laplace transform twice converts the
original partial differential Eqgs. (24) through (28) into
a set of linear algebraic equations, (74)-(78).

The solution of Egs. (74) through (78) is shown as
follows:

_l[kl(s + a + ikluo) +fk2]

U= ® (81
velocity w is zero at the ground: (s + a + ikiuo)? + f? &b
. _l[kz(s +a + ikluo) _fkl]
imu’, v, w', b, ¢ =0 79 = o 82
hm u', o', w', b7, & 79 (s + a 1 ikto)2 + f2 (82)
3 —I(s) . k? iz
TG + a + ikuo)? + f21 (p + LAY (p2 — k2T |7 7°
' - (s + a + ikiug)k? .
T {pW(O’ DGt ot k) 12 O s)} (83)
N k2 Al
_ I(s) 1 |4 _(stat ikig)® + £ 47
(s + a + ikug) (p + 1/h) p? — k°T? e
1 k2N2 N 2 .
&0, ) - ————— pW (0, 84
+p2 — k27? {(s + a + ikug)® + f2 (0, 5) s+a+ ikluopW( S)} (84)
_ 1(s) P 47
(s + a + ik (p + LR (p2 — K2TH |72
1 . (s + a + ikug)® + N? .
b - W , (85
+p2 — k*T? {p(I)(O’ s) s+ a + ik (0, 5) (85)

where

(s + a + ikug)* + N?
(s + a + ikug)* + f2

172
T=T(s)=[ } . (86)

Next we use the inverse Laplace transform twice,
£;% and £7}, on (81)~(85) to solve for dZs

dZ,(ki, ky; z,t) = L5 { £, {U}}
dZ,(ki, kys z, 1) = L { L, {V}}
dZ,(ki, ka2, 8) = L { L, {W}}
dZ,(ki, ky; 2, 1) = L,/ {£,:{B}}

—k*h? I(s)
(1 — &%) [(s + a + ikug)? + A?]

W=2L W)=

fer

+ cosh(kzT)W (0, s) —

dZy(ki, kayz, 1) = L5 (L5 (P} }.

The inverse Laplace transform £, } on Eq. (81) through
(85) leads to '

U=£;1{U)

_ _l[kl(s + o+ ikluo) +fk2] =

T (s +a+ ikug)® + f? ¢ 6D
V=2£1V)

_ —l[kg(S + o + iklug) "fk]] @ (88)

(s + @ + ikuy)? + 2

1
Y —— sinh(zkT')

hkT

b -

> — cosh(zkT) +

}sz

s+ a+ik k . N
G+a rar )I?O+ 727 Sinh (D)0, 5) - (89)
140
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. ~ I(s) z kh? N? z
B=ff (B = — 07 -2+ S
B = T T om) {CXP( h) 1= &2 [(s + & + thiug)® + A] exP( h)
— cosh(zkT) + 1 inh(zkT) | $dZ, + KN 1 h(kzT)$(0
¢ wier ST ot T o+ )t 4 f2 er ST R(0, 5)
2
[ h 17
T o o cosh(RDW(0,5) (90)
. ~ ~h is) (s + a + ikuy)? + f2 'z
$=r51{P) = -=
i = O T G a+ i) o+ ot e + A2 1P\ T
— cosh(zkT) + hkT sinh(sz)}dZQ + cosh (kzT) (0, 5)
(s +a + iku))* +N* V| .
_ — sinh
P (kzT)W (0, s), (91)
where —h I(s)

. f2 . kZhZNZ

A 1 — k*h?

(92)

The boundary conditions (79) and (80) require

W(0,s) =0 (93)

h (s)

b -
O = T G+ e+ k)

(s + a + ikwug)? + f?
(s+a+ ikllu(?)z T pr (KT = DdZo. (54)

Thus, the solution of Eqs. (87) through (91) subject to
the boundary conditions (93) and (94) is

—z[kl(s + o + ikluo) +fk2] ~

U= (s + a + ikug)? + f? ® O

. —ilk(s + a + k) = fhi) 5

V= (s + a + ikup)? + f2 ¢ (96)
o kR i(s)

T (1 = k%R [(s + a + ikug)? + A?]
X {exp(— %) - exp(—sz)}dZQ (97)

- I(s) z
B= v ot ko {eXp< h>

k*h*? N?

+
1 — k*h? [(s + a + ikug)? + A?]

X [exp(— }%) - exp(—sz)]}dZQ (98)

é =
(1 — K*h?) (s + a + ikio)

e

— khT exp(—sz)}dZQ. (99)

(s + a + ikug)* + f*
(s + o + ikuy)?* + A®

Using the inverse Laplace transform £} on (95) -
(99) results in the functional forms of dZ’s shown in
section 3c.

APPENDIX C
Derivation of Eq. (53)
We may rewrite Eq. (51) using Eq. (§) as
dq . 9q , 9q Oq
—+u—+v—+w—=0 100
o " Yax T Vay T "o (100)

Linearly superimposing the synoptic wind u, on the
thermally induced mesoscale flow component u, and
substituting Eqs. (11)—(13) and (52) into Eq. (100),
we have

9q 09"  Oq' 94
ar "o T T ox
dq’ g q’
oA v A @l 101
V' 5z TV 5~ O (10D

where we have used the conditions @ = 0, v = 0, and
w = 0.

Assuming the domain-averaged moisture profile g to
be independent of time, implying § = g(z), and drop-
ping the cross products of the perturbation terms in Eq.
(101) leads to the linearized equation for g':
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oq' oq' o9

— 4t uy——+w —=0 102

ar " ax TV 5 -4
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