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Climate change unlikely to increase malaria
burden in West Africa
Teresa K. Yamana1, Arne Bomblies2* and Elfatih A. B. Eltahir3

The impact of climate change onmalaria transmission has been
hotly debated. Recent conclusions have been drawn using rela-
tively simple biological models1,2 and statistical approaches3–5,
with inconsistent predictions. Consequently, the Intergovern-
mental Panel on Climate Change Fifth Assessment Report
(IPCC AR5) echoes this uncertainty, with no clear guidance
for the impacts of climate change on malaria transmission,
yet recognizing a strong association between local climate
and malaria6,7. Here, we present results from a decade-long
study involving field observations and a sophisticated model
simulating village-scale transmission. We drive the malaria
model using select climate models that correctly reproduce
historical West African climate, and project reduced malaria
burden in a western sub-region and insignificant impact in an
eastern sub-region. Projected impacts of climate change on
malaria transmission in this region are not of serious concern.

Climate is known to affect malaria transmission through
multiple pathways8–11, therefore the future of the disease in a
warmer world is a question of great public health concern.
Model forecast discrepancy has been attributed to differences in
modelling approaches12, as some studies use relatively simplistic
biological models that do not capture the complex nonlinear
relationships between environmental determinants and malaria1,2,
while others employ statistical regressions that similarly bypass
important intermediate processes3–5. Thus far, very few studies
have incorporated climate-driven hydrology as a determinant
of mosquito populations and malaria transmission13, and no
models have moved beyond simple coarse surface hydrology
parameterization as an intermediate link between climate and
malaria. We address this shortcoming using a sophisticated high-
resolution model to simulate future malaria transmission for West
Africa at spatial and temporal scales that match village-scale
transmission dynamics. In an earlier study14, we assessed the
changes in mean environmental suitability for malaria transmission
corresponding to the most extreme predictions of future rainfall
and temperature from an ensemble of global climate models. Here,
we extend this analysis by predicting changes to the frequency of
malaria outbreaks and seasonal malaria prevalence rates using the
most credible climate predictions for this region.

West Africa is a hotspot for malaria transmission, as the
region currently has the highest rates of malaria infections and
deaths in the world15. Transmission is dominated by Anopheles
gambiae sensu lato mosquitoes that develop in the numerous
small, turbid pools that form following rainfall. Anopheles funestus
mosquitoes, which prefer larger bodies of water, are also efficient
malaria vectors where suitable developmental habitat exists. In
many parts of West Africa, rainwater pools are quickly emptied

by evapotranspiration and infiltration, and become productive
developmental habitat only if they persist for the duration of
the aquatic, subadult stage of mosquitoes. The persistence of
such pools depends on rainfall amount and temporal patterns of
rainfall16, but local micro-topography will yield a wide range of
pool sizes with variable persistence. Moreover, spatial relationships
of developmental habitat with human habitation can be very
important17. As a result, the relationship between rainfall and
malaria is highly nonlinear and difficult to parameterize without
resorting to a fully mechanistic representation of hydrological
processes and mosquito population dynamics. Mosquito survival
is a function of temperature, with maximum longevity between
15 and 30 ◦C, and severe mortality at temperatures below 10 ◦C
and above 35 ◦C18. Temperature also affects the development rates
of the aquatic-stage mosquito, as well as the incubation period of
the parasite within the mosquito. Supplementary Fig. 1 shows the
primary relationships linking climate to malaria transmission.

Extensive field work in two villages in Niger (Fig. 1 and
Supplementary Fig. 2) led to the development of the Hydrology,
Entomology, andMalaria Transmission Simulator (HYDREMATS),
a mechanistic model of malaria transmission incorporating
spatially explicit hydrology representation and agent-based
mosquito population dynamics19,20. All of the major processes
linking environmental variables to malaria infections in human
populations are explicitly simulated with high spatial and temporal
resolution, including the geophysical processes dominating
the formation of water pools, spatially distributed agent-based
simulation of individual mosquitoes and their interaction with
developmental habitat and human populations, and human
physiological processes of infection, recovery, and gradual
acquisition of immunity (Fig. 2a). Model parameter settings were
adjusted for Plasmodium falciparum, the dominant malaria parasite
in West Africa15.

Data collected from our field campaigns inNiger were previously
used to calibrate and test the ability of HYDREMATS to represent
soil moisture, water pool location, pool depth, water temperature
and adult mosquito population dynamics accurately in this semi-
arid climate region21. Previous work has also evaluated the
uncertainty in the deterministic model forecasts19,20. In this study,
our objective is to assess the impacts of climate change not only
on the basic reproduction number (R0, the expected number of
secondary infections resulting from an initial case), but also on
the frequency and severity of malaria outbreaks throughout the
region. These outbreaks may take the form of malaria epidemics
in the northernmost locations in the desert fringe, and they may
involve transmission intensification in the endemic regions of the
Sahel and Sudano-Sahel. To this end, we simulate entomological

1Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, USA. 2School of
Engineering, University of Vermont, 33 Colchester Avenue, Burlington, Vermont 05405, USA. 3Department of Civil and Environmental Engineering,
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. *e-mail: abomblie@uvm.edu

NATURE CLIMATE CHANGE | ADVANCE ONLINE PUBLICATION | www.nature.com/natureclimatechange 1

© 2016 Macmillan Publishers Limited. All rights reserved

http://dx.doi.org/10.1038/nclimate3085
mailto:abomblie@uvm.edu
www.nature.com/natureclimatechange


LETTERS NATURE CLIMATE CHANGE DOI: 10.1038/NCLIMATE3085

Low

>500
250

S1 M4

M3

N3

M1

M2
N1

N2

NA1

M5

M6
M7

0

Moderate
High

Population density:

Transmission category:

Figure 1 | Study location. Simulations are conducted for each of the 12 locations indicated on the map. The study field locations at Banizoumbou and
Zindarou villages in Niger are located at the N3 marker. The model is tested against observations from the Garki district, located at maker NA1. The
background image shows estimated persons per 0.0083◦ grid cell (roughly 1 km2) in 2010 from the WorldPop database28.
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Figure 2 | HYDREMATS model. a, Schematic of the three model components of HYDREMATS. b, Relationship between the entomological inoculation rate
(EIR) and malaria prevalence in observational data reported by Beier et al.24 (pink) and simulated by HYDREMATS (black).

conditions and malaria prevalence and compare them to various
observational data sets from multiple climate zones in West Africa
to explore themodel’s credibility in simulating these variables. In the
Supplementary Methods, we show the results of these comparisons,
including malaria prevalence estimates from the Malaria Atlas
Project (Supplementary Fig. 3)22 and entomology and malaria
prevalence data from the Garki district in Nigeria (Supplementary
Figs 4 and 5)23. Figure 2b compares the simulated and observed

relationship between malaria prevalence and the entomological
inoculation rate (EIR), ameasure of force of infection that combines
mosquito population dynamics and parasite presence to represent
the number of infectious bites per person per day. Beier et al.24
established a log-linear relationship between prevalence and EIR
that persisted when data were stratified by ecological zone as well as
between East and West Africa, indicating that this is a fundamental
relationship and independent of climate. HYDREMATS simulates
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Figure 3 | Projected changes in rainfall, basic reproduction number and malaria prevalence. a, Projected change in annual rainfall by 2070–2100 as a
percentage of 1975–2005 mean rainfall under RCP8.5, averaged between CCSM4 and MPI-ESM-MR. The labelled rectangles group the study area by
response to climate change. b,c, Detailed simulation results are shown for two sites, M4 (b) and N3 (c), with current climate (circles), CCSM4-projected
future (crosses) and MPI-ESM-MR-projected future (triangles). The top rows show log10 (R0) and the bottom row shows mean prevalence in children
aged 2–10. The left-hand panels are modelling results from the detailed HYDREMATS simulations. The right-hand panels apply a regression relationship
to annual rainfall and mean wet season temperature data. JAS: July–August–September.

a very similar log-linear relationship (Fig. 2b), validating the
model’s ability to simulate the immune response to EIR (ref. 6).
Immunological processes included in the model follow standard
models in the literature, and are fully described in Yamana and
colleagues20. Therefore, the validated disease transmission model is
able to simulate the feedbacks between inoculations, immunity and
infections for a wide range of malaria transmission levels.

We use the model to assess impacts of climate change on
frequency and severity of malaria outbreaks in West Africa.
However, in addition to the complexities in linking rainfall to
malaria transmission under current climate conditions, climate
models do not agree on the future rainfall of West Africa, adding
additional uncertainty to malaria projections. We thus evaluate
climate models’ abilities to simulate historical climate to determine
the most skilled models for use in the future climate change impact
assessment (Methods and Supplementary Fig. 6). We identify two
models, CCSM4 and MPI-ESM-MR, as being the most credible
in this region. Under the Representative Concentration Pathway
8.5 (RCP8.5) scenario, these two models predict similar patterns
of rainfall changes by the end of the twenty-first century: drier
conditions in the western sub-region of West Africa, and wetter
conditions in the east (Methods and Supplementary Figs 7 and 8).
This pattern of change is consistent with the majority of CMIP5
models, as well as the CMIP3 and CMIP5 ensemble means25,26.
We simulate malaria transmission using these projections of future

climate at each of twelve locations across West African climate
zones. We report the expected change in frequency of malaria
outbreaks as determined by the fraction of years withR0 >1, and the
severity of these outbreaks as determined by the disease prevalence
in the simulated population at the peak of the transmission season.
While there are a number of factors besides the basic reproduction
number that determine whether a malaria outbreak will occur in a
given year, the R0 > 1 criterion provides a necessary condition that
must be met in order for the disease to spread.

The results are categorized by geographical sub-region as shown
in Fig. 3a, and expected response to climate change is shown in
Fig. 3, Supplementary Fig. 9 and Supplementary Table 1. Current
wet season temperatures throughout our study region currently
approach or exceed the limits of mosquito survival, thus all future
warming scenarios led to increased mosquito mortality. Overall
changes are expected to be small in the northernmost locations
(Sub-region ii) despite increases in rainfall. The hot and dry
conditions severely limit mosquito breeding and survival, and
thus do not sustain malaria transmission in either the current
or the future climate. The southern locations (Sub-region iv),
where recent climate is currently highly suitable for transmission,
are also insensitive to changes in climate. In the simulations,
future temperatures increase, but remain within the mosquito’s
survival limits. Projected long-term changes in rainfall are modest
(±20%) and small compared to current inter-annual variability. As
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Figure 4 | Simulated relationships between environmental variables and malaria transmission indices. a–d, Simulated relationships between annual
rainfall, July–August–September (JAS) temperature, and annual log10(R0) (a), annual log10(EIR) (b), mean wet season malaria prevalence in children
aged 2–10 (c) and mean immunity index in the modelled population (d). a,b share the top colour bar and c,d share the lower colour bar.

a result, there is little expected change in malaria transmission in
these locations.

Sub-region i, where both climate models predict decreased
rainfall along with substantial increase in temperature, will see the
most dramatic changes. Because this sub-region has R0 values close
to the threshold value for most years in the current climate, the
hotter and drier future conditions lead to a higher proportion of
years with R0 < 1. The result is a projected significant decrease
in frequency and severity of malaria outbreaks, as reflected in
the simulated peak prevalence. Detailed results for village M4 in
Southern Mali are shown in Fig. 3b.

Finally, Sub-region iii represents themost critical scenario, due to
projected increase in rainfall and low levels of population immunity.
In the current climate, these locations have low to moderate
malaria transmission, with strong inter-annual variability. In our
simulations, we find that the effects of future changes in rainfall
(by increasing mosquito breeding) and temperature (by increasing
mosquito mortality) are of similar magnitude, leading to small and
uncertain changes in simulated R0, and the associated frequency of
malaria outbreaks.

Climate change in West Africa can lead to changes in both
the mean conditions and inter-annual variability of malaria
transmission. We extend our analysis beyond the 15-year period
for which high-resolution temperature and precipitation data are
available by using HYDREMATS to establish relationships between

current climate and important indices of malaria transmission.
We perform simulations for several locations throughout the
region and present malaria metrics for individual years in
multi-year simulations as points in rainfall–temperature space
(Fig. 4 and Methods). For any given rainy season temperature
and precipitation combination, the immunological indices
(prevalence and immunity) show much greater variability than
the entomological indices EIR and R0, because the human
immune system has a memory of past malaria exposure. Human
immune response to malaria inoculation operates on the timescale
of several years27, as human agents slowly build immunity
with each infectious bite received. Prevalence is influenced by
mosquito population dynamics and immunity levels in the human
population, as well as the recent history of malaria exposure within
the population. During a multi-year simulation, the memory
of human immunity therefore prevents immediate pronounced
malaria response to a new, altered combination of temperature and
precipitation in a subsequent year, resulting in the greater scatter
of points shown in Fig. 4c,d. In contrast, clustering is observed in
Fig. 4a,b, reflecting the more immediate response of EIR and R0 to
climate phenomena.

The simulated relationships of malaria indices to climate
variables, shown in Fig. 4, are simplified using regression analysis.
The resulting regression models are applied here to estimate the
response of malaria transmission to climate change, for the same
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locations, using a longer period of climate forcing without the need
to resort to detailed and computationally expensive modelling (see
Supplementary discussion and Supplementary Tables 2 and 3). We
apply this regression approach to determine the expected change
in variability of R0 and prevalence for a longer time period under
current and future climate, shown in the right-hand panels of
Fig. 3b and 3c, and compare with the results of direct HYDREMATS
application. The results for the longer period compare favourably
with the conclusions drawn from the shorter simulations.

Taken together, results presented here signal an impact of
future climate change on West African malaria transmission that is
negative at best, and positive but insignificant at worst. This analysis
confirms that no major increases in the frequency or the severity
of malaria outbreaks in West Africa are expected as a result of
climate change.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
HYDREMATS simulations. HYDREMATS Model description. The modelling tool
used in this study is the Hydrology, Entomology and Malaria Transmission
Simulator (HYDREMATS). A detailed description of the model has previously
been reported19,20. In brief, the model consists of three coupled components: a
physics-based hydrology model, an agent-based entomology model, and a spatially
explicit malaria transmission model (Fig. 2a). The model has been developed for
the village scale, with a spatial resolution of 10m× 10m and a 1 h time step. The
hydrology component represents the partitioning of rainfall into infiltration and
runoff, and subsequent water ponding in topographical low points leading to the
small, turbid developmental habitats used by the Anopheles gambiae s.l.mosquitoes
that dominate malaria transmission in West Africa. The model also simulates the
physical processes by which the pools grow due to additional rainfall and shrink
due to evaporation and infiltration for each time step. These processes are sensitive
to the meteorological variables: precipitation, temperature, humidity, incoming
solar radiation and wind. The temperature of each water pool, which is important
for larval development, is computed by solving a system of energy balance and heat
transfer equations.

The HYDREMATS entomology component simulates individual mosquito and
human agents throughout the model domain. Mosquito agents respond
probabilistically to their environment based on a set of rules governing dispersal
and discrete events, including feeding, resting, egg-laying, and death. The aquatic
stage of mosquitoes is simulated in water pools. Aquatic-stage mosquitoes develop
at a temperature-dependent rate before emerging as adults. Aquatic-stage
mosquitoes present in a pool that completely dries are killed in the model, as no
surviving larvae were ever found in the rapidly drying mud of the study region. By
this mechanism, the model represents nonlinearity in precipitation/mosquito
connections derived from land-surface hydrological processes. Some studies have
found that intense precipitation flushes larval mosquitoes from their
developmental habitat, which can contribute to nonlinearity between precipitation
and malaria transmission29,30. However, in our study sites, twice-weekly counts of
larvae and pupae in water pools within and surrounding villages revealed that
subadult populations are insensitive to intense precipitation. This process was
therefore not modelled.

Daily mosquito survival is calculated as a function of temperature, according to
the Martens equation18.

The malaria transmission component of the model simulates the spread of the
Plasmodium parasite through mosquito bites20. A mosquito biting an infected
individual has a probability of acquiring the disease. After a temperature-
dependent extrinsic incubation period11, the mosquito becomes infectious to
humans during subsequent blood meals. Humans with repeated malaria
inoculations gradually build partial immunity to disease. This immunity reflects
temporal and spatial heterogeneities in the entomological inoculation rate, both
between different climates in West Africa, as well as localized differences within
villages based on proximity to mosquito breeding sites. Partial immunity decreases
the probability that a human acquires the disease after an inoculation, and also
decreases the duration of infection in infected individuals.

Because Anopheles gambiae s.l. is dominant throughout the Sahel, and transmits
malaria throughout most parts of the steep meridional climatic gradient that
currently exists in the Sahel, we assume that mosquito behaviour will not change in
response to climate. However, it is possible that, as the climate changes, individual
mosquitoes in a particular population may begin to seek out and prefer
microclimates, such as more time sheltered in the cool shade of houses or trees,
that shield them from climatic extremes. This sort of behavioural response requires
further research and we therefore do not include it in the model.

Design of numerical experiments.We selected 12 locations, shown in Fig. 1, from
areas that currently have low to moderate levels of malaria transmission. For each
location, we conducted a 15-year simulation, driven by environmental data from
1998 to 2012. The relatively long simulation length allowed simulation of the effects
of inter-annual variability, particularly through the complex feedback processes
between entomological inoculation rates (EIR), acquired immunity to malaria, and
disease prevalence. Although simulation longer than 15 years would have been
preferable, we were limited by the availability of environmental data with sufficient
temporal resolution (hourly). Rainfall increases from north to south, both in the
amount of rainfall per week and the number of weeks with rainfall. Wet season
temperatures decrease from north to south. Environmental data sources used in the
current-climate HYDREMATS simulations are described in the Supplementary
Methods and summarized in Supplementary Table 4.

Selecting CMIP5 climate models.We examined historical temperature and
rainfall data simulated by 23 global climate models (also called general
circulation models; GCMs) and earth systems models (ESMs) from the Coupled
Model Inter-comparison Project Phase 5 (CMIP5)31. The models analysed are
listed in Supplementary Table 5, and their main features are described in the
IPCC AR532.

Current global climate models are known to have biases in simulating the main
characteristics of the West African Monsoon, which dominates rainfall in our study
area25,33,34. This is believed to be the result of a warm sea surface temperature bias in
the equatorial Atlantic, which affects the northward migration of the Intertropical
Convergence Zone over the region25,33. In selecting our climate models, we make
the assumption that the models that most accurately reproduce the seasonal cycle
of rainfall and temperature, and hence are most accurate in simulating the West
African monsoon, are therefore the reliable models to use in a climate
impacts study.

We conducted an evaluation of CMIP5 models based on simulated temperature
and rainfall, in our study region, as these are the variables most relevant to malaria
transmission, and are required as inputs for HYDREMATS. The evaluation
consisted of three stages: an analysis of the models’ performance in simulating
the seasonal cycles of rainfall and temperature in the study area; a literature
search for known defects in the top climate models; the selected models were
then ranked based on their ability to reproduce the spatial characteristics of
historical climate.

We defined the region of interest as bounded by 18◦W to 16◦ E, and 11◦ N and
21.5◦ N. This area was further divided into three sub-regions, corresponding
roughly to the Sahelo-Sahara (Zone 1: 18–21.5◦ N), Sahel (Zone 2: 14.5–18◦ N), and
Soudan (Zone 3: 11–14.5◦ N) eco-climate zones35. We compared output from the
models’ CMIP5 historical simulations31 to data from the Climatic Research Unit
Time-Series Version 3.21 (CRU TS 3.21). The CMIP5 family of historical
simulations spans the period 1850 to 2005, forced by observed concentrations of
greenhouse gases.

We calculated the average monthly observed rainfall and temperature from
1930 to 2005 using the CRU TS 3.21 data set and compared the observed seasonal
cycles to simulated average monthly rainfall and temperature from each of the 21
climate models. We computed the sum of squared errors (SSE) for each model in
each of six measurements: average monthly rainfall in Zones 1–3 and average
monthly temperature in Zones 1–3. For each of six measures, we ranked the models
from best to worst using the SSEs. We then assigned one point to the top six models
for each measure, and subtracted one point for the bottom six models. The results
of this analysis are shown in Supplementary Table 5. The highest scoring models
were BNU-ESM (6 points), MIROC5 (5 points), MPI-ESM-MR (4 points), CCSM4
(3 points) and CanESM2 (3 points).

Next, we performed a literature search focusing on the top-scoring climate
models to screen them based on already identified defects. The only model that
stood out is BNU-ESM, which exhibits large errors in simulating the global
atmospheric water balance, leading to a ghost source of precipitation and false
latent cooling36. We deemed this non-stationary error to be sufficiently problematic
to preclude the model’s ability to simulate future rainfall, and thus excluded this
model from the study.

The spatial characteristics of historical rainfall during the period 1930–2005 for
the observational data set and the selected models are shown in Supplementary
Fig. 6. The observations feature a north-to-south gradient in rainfall, while
remaining relatively constant from east to west, with local maxima associated with
orographic effects over the Fouta-Djallon region along the southwestern coast and
over the Mount Cameroon region, the southeastern extent of our study area37.
These features are generally well reproduced by CCSM4 and MPI-ESM-MR. While
MIROC5 performed well in the area used for our initial analysis, it greatly
overestimated rainfall in the southern half of West Africa, by as much as
1,000mmyr−1. CanESM2 also showed errors in the spatial distribution of rainfall,
extending too far north into the Sahara desert, and its isohyets peaked between
5◦W and 5◦ E, unlike the roughly latitudinal isohyets in the observations. As a
result, we select CCSM4 and MPI-ESM-MR as the most credible models in
this region.

Using projections of rainfall and temperature from CCSM4 and MPI-ESM-MR
climate models, we simulated malaria transmission in 2070–2100 for each of
the 12 locations to determine the changes in malaria transmission due to climate
change. In addition, we present results using projections fromMIROC5 and
CanESM2 to show the sensitivity of our results to differences in climate
projections (Supplementary discussion and Supplementary Fig. 10 and
Supplementary Table 1).

Climate predictions for West Africa.We obtained monthly rainfall and
temperature output for our selected climate models from the RCP8.5 scenario,
which represents a future with high greenhouse gas concentrations, resulting in an
increased radiative forcing of 8.5Wm−2 by 2100 relative to pre-industrial levels31.
We computed monthly and annual average rainfall and mean temperature between
July and September (JAS; the peak malaria transmission season) over the
short-term (2030–2060) and long-term future climate (2070–2100), and compared
to recent values (1975–2005). Predicted changes in rainfall are shown in
Supplementary Fig. 7 and predicted changes in temperature are shown in
Supplementary Fig. 8. The two models show a general pattern of drying in the
western portion of our study area, and wetting in the eastern and southern areas.
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The magnitude of these changes, as well as the extent of the area with predicted
drying, varies somewhat by model. This pattern of rainfall change is consistent
with 75% of the CMIP5 models analysed by Roehrig et al.25, and is consistent with
analyses of various subgroupings of CMIP5 models26,38–40.

The overall precipitation signal is stronger in CCSM4 than in MPI-ESM-MR.
As a result, the average of the two models more closely resembles the pattern
predicted by CCSM4. Temperatures generally increase more in the west than in the
east, consistent with the spatial extent of predicted changes in precipitation.
MPI-ESM-MR predicts JAS temperature increases between 2.0 and 5.9 ◦C in
2070–2100, while CCSM4 predicts slightly less warming, between 0.5 and 2.8 ◦C in
2030–2060, and between 1.2 and 5.5 ◦C by 2070–2100.

Establishing regression relationships between climate and malaria transmission
indices. Our initial simulation of twelve baseline locations yielded relationships
between annual rainfall and temperature and the corresponding entomological
and immunological values. To further explore these relationships, we performed
additional realizations at each location using hypothetical combinations of
annual rainfall and temperature inputs for a total of 1,600 realizations. Each of
these additional simulations ran for 15 years at one of the twelve
baseline locations.

We used the results of these simulations, shown plotted in rainfall–temperature
space in Fig. 4, to fit linear regression models to predict R0, EIR, immunity level
and peak prevalence based on annual rainfall and July–September mean
temperature. We correlated all four indices of malaria transmission with annual
rainfall and July/August/September temperature (TJAS), as well as with each other.
The coefficients of determination (R2) are listed in Supplementary Table 2. The
coefficients and R-squared values for these regression models are listed in
Supplementary Table 3 in the form f(TJAS,rain)= a+ b× TJAS+ c/1,000× rain.
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