The Response of Environmental Capacity for Malaria Transmission in West Africa to Climate Change

Teresa K. Yamana & Elfatih A.B. Eltahir MIT Dept. of Civil & Environmental Engineering

Research Question

- How will environmental suitability for malaria transmission in West Africa respond to climate change scenarios predicted by current GCMs?
- In some scenarios, the effects of warming and changing precipitation act in opposite directions, so the overall effect of malaria transmission is unknown.

RELATIONSHIP BETWEEN CLIMATE AND MALARIA

Anopheles gambiae mosquito ecology

Anopheles mosquito ecology

Timescales of mosquito lifespan and malaria development

Measure of climate suitability: Vectorial Capacity

 Vectorial Capacity: Number of inoculations from a single infected person per day

$$|VC = ma^2 \times p^n \times d|$$

m: mosquitoes per human

a: bites per mosquito per day

p: probability mosquito survives one day

n: extrinsic incubation period

d: average number of days until mosquito dies

p,n and d depend on temperature m and a depend on temperature and rainfall

Measure of climate suitability: Vectorial Capacity

 Vectorial Capacity: Number of inoculations from a single infected person per day

$$VC = ma^2 \times p^n \times d$$
Temperature dependent equations

m: mosquitoes per human

a: bites per mosquito per day

p: probability mosquito survives one day

n: extrinsic incubation period

d: average number of days until mosquito dies

p,n and d depend on temperature

m and a depend on temperature and rainfall

Measure of climate suitability: Vectorial Capacity

 Vectorial Capacity: Number of inoculations from a single infected person per day

m: mosquitoes per human

a: bites per mosquito per day

p: probability mosquito survives one day

n: extrinsic incubation period

d: average number of days until mosquito dies

p,n and d depend on temperaturem and a depend on temperature and rainfall

CURRENT CLIMATE IN WEST AFRICA

North-South Gradients in Temperature and Rainfall

North-South Gradients in Temperature and Rainfall

Estimated malaria prevalence

prevalence

High: 1

Copyright: Licensed to the Malaria Atlas Project (MAP; www.map.ox.ac.uk) under a Creative Commons Attribution 3.0 License (http://creativecommons.org/)

Citation: Hay, S.I. et al. (2009). A world malaria map: *Plasmodium falciparum* endemicity in 2007. *PLoS Medicine* 6(3): e1000048.

PREDICTED CLIMATE IN WEST AFRICA

Change in climate predicted by IPCC Assessment Report 4 A1B emissions scenario

Expected effect of Climate Change

Red: Higher Vectorial Capacity

Green: Lower Vectorial Capacity

Orange: Unknown

Changes predicted by IPCC models

Box 1

Changes predicted by IPCC models

Box 1

Changes predicted by IPCC models

HYDREMATS: Hydrology Entomology & Malaria Transmission Simulator

simulate pool losses to infiltration/evaporation

PRELIMINARY RESULTS FROM HYDREMATS

CONCLUSIONS

Conclusions

- Even under the worst case scenario, we do not expect to see a major increase of malaria transmission in this region
 - Box 1: Higher VC, but still too low for transmission
 - Box 2: Increase in VC due to increased rainfall balances the decrease in VC due to higher temperature
 - Box 3: Small increase in VC over the 9 years
- The hottest and driest scenarios would eliminate transmission in Boxes 1 & 2, and substantially decrease transmission in Box 3

EXTRA SLIDES

Figure 11.2. Temperature and precipitation changes over Africa from the MMD-A1B simulations. Top row: Annual mean, DJF and JJA temperature change between 1980 to 1999 and 2080 to 2099, averaged over 21 models. Middle row: same as top, but for fractional change in precipitation. Bottom row: number of models out of 21 that project increases in precipitation.

Range of predicted changes in temperature

Вох		season increase		season increase	Model predicting min increase
1	32.2	5.6	GFDL/NOAA	2.3	NCAR - CCSM
2	31.3	5.2	ECHAM	2.6	NCAR - CCSM
3	28.9	5.1	University of Tokyo – MIROC high-res	2.8	NCAR - CCSM
4	26.8	4.8	University of Tokyo – MIROC high-res	2.6	NASA/GISS - AOM
5	25.7	4.4	University of Tokyo – MIROC high-res	2.3	CSMK3

Range of predicted changes in rainfall

Box	CRU 1980-1999	Max increase 2080-2099	wettest	Max decrease 2080-2099	driest
Box	CITO 1300 1333	2000 2000	Wettest	2000 2033	difest
1	52	83	NCAR	-105	GFDL/NOAA
2	223	107	NCAR	-206	GFDL/NOAA
			ECHAM +		
3	715	178	HOPEG	-254	GFDL/NOAA
			ECHAM +		
4	1286	214	HOPEG	-212	GFDL/NOAA
					University of
					Tokyo – MIROC
5	1743	295	NASA/GISS E-H	-227	med-res

Change in Vectorial Capacity due to temperature alone

$$VC = ma^2 \times p^n \times d$$

- Warm Wet:
 - Maximum increase in precipitation and minimum increase in temperature
 - "Worst Case Scenario"
- Hot Dry:
 - Minimum Increase in precipitation and maximum increase in temperature
 - "Best Case Scenario"