Water and Health Conference October 6, 2011

ASSESSING THE IMPACT OF CLIMATE CHANGE ON MALARIA TRANSMISSION IN WEST AFRICA

Teresa K. Yamana & Elfatih A.B. Eltahir Dept. of Civil & Environmental Engineering MIT

Research Question

- How will environmental suitability for malaria transmission in West Africa respond to climate change scenarios predicted by current GCMs?
- We expect warming alone to decrease transmission. However the combined impacts of warming and changing precipitation is unknown.

Relationship between climate and malaria

Anopheles gambiae mosquito ecology

Anopheles mosquito ecology

Timescales of mosquito lifespan and malaria development

Measure of climate suitability: Vectorial Capacity

 Vectorial Capacity: Number of inoculations from a single infected person per day

$$VC = ma \times p^n \times d \times a$$

m: mosquitoes per human

a: bites per mosquito per day

p: probability mosquito survives one day

n: parasite development time in mosquito gut

d: average number of days until mosquito dies

p,n and d depend on temperaturem and a depend on temperature and rainfall

Current climate in West Africa

West Africa mean annual rainfall CRU 1980-1999

West Africa mean annual temperature CRU 1980-1999

West Africa malaria prevalence Malaria Atlas Project

Low: 0

Copyright: Licensed to the Malaria Atlas Project (MAP; www.map.ox.ac.uk) under a Creative Commons Attribution 3.0 License (http://creativecommons.org/)

Citation: Hay, S.I. *et al.* (2009). A world malaria map: *Plasmodium falciparum* endemicity in 2007. *PLoS Medicine* **6**(3): e1000048.

Predicted climate in west africa

Change in climate predicted by IPCC Assessment Report 4 A1B emissions scenario

Changes predicted by IPCC models

Box 1

Changes predicted by IPCC models

Box 1

Worst case outcome

 Change in climate predicted by a GCM

Changes predicted by IPCC models

Worst case outcome

Change in climate predicted by a GCM

Change in Vectorial Capacity due to temperature alone

$$VC = ma \times p^n \times d \times a$$

- Warm Wet:
 - Maximum increase in precipitation and minimum increase in temperature
 - "Worst Case Scenario"
- Hot Dry:
 - Minimum Increase in precipitation and maximum increase in temperature
 - "Best Case Scenario"

Hydrology, Entomology and Malaria Transmission Simulator

Model Description: HYDREMATS

HYDREMATS: Hydrology component

HYDREMATS: Entomology and Malaria Transmission Components

Preliminary results from HYDREMATS

Conclusions

Conclusions

- There is a wide range of climate change predictions in West Africa using current IPCC general circulation models
- Even under the worst case scenario, we do not expect to see a significant increase of malaria transmission in this region

Acknowledgements

- Advisor Elfatih Eltahir
- Arne Bomblies, University of Vermont
- NSF
- Data sources
 - NOAA CPC Morphing technique (CMORPH)
 - University of East Anglia CRU TS 3.1
 - IPCC AR4 SRES scenarios monthly climatologies
 - Malaria Atlas Project

Extra slides

Figure 11.2. Temperature and precipitation changes over Africa from the MMD-A1B simulations. Top row: Annual mean, DJF and JJA temperature change between 1980 to 1999 and 2080 to 2099, averaged over 21 models. Middle row: same as top, but for fractional change in precipitation. Bottom row: number of models out of 21 that project increases in precipitation.

Range of predicted changes in temperature

Вох	CRU 1980-1999: temperature in rainy months	Max rainy season increase 2080-2099	Model predicting max increase	Min rainy season increase 2080-2099	Model predicting min increase
1	32.2	5.6	GFDL/NOAA	2.3	NCAR - CCSM
2	31.3	5.2	ECHAM	2.6	NCAR - CCSM
3	28.9	5.1	University of Tokyo – MIROC high- res	2.8	NCAR - CCSM
4	26.8	4.8	University of Tokyo – MIROC high- res	2.6	NASA/GISS - AOM
5	25.7	4.4	University of Tokyo – MIROC high- res	2.3	CSMK3

Range of predicted changes in rainfall

Box	CRU 1980-1999	Max increase 2080-2099	wettest	Max decrease 2080-2099	driest
1	52	83	NCAR	-105	GFDL/NOAA
2	223	107	NCAR	-206	GFDL/NOAA
3	715	178	ECHAM + HOPEG	-254	GFDL/NOAA
4	1286	214	ECHAM + HOPEG	-212	GFDL/NOAA
					University of Tokyo –
			NASA/GISS E-		MIROC med-
5	1743	295	Н	-227	res