Irrigation consistently enhances rainfall around the Gezira Scheme in East Africa

Ross E. Alter*1, Eun-Soon Im*2, Elfatih A. B. Eltahir1

¹ Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts

² Center for Environmental Sensing and Modeling, Singapore—MIT Alliance for Research and Technology (SMART), Singapore

* = Equal contributions

Background

- Rapid changes in land use and land cover (LULC) over the course of the 20th century
- Global area equipped for irrigation (Siebert et al., 2015)
 - 1900 = 63 million ha
 - 1950 = 111 million ha
 - 2005 = 306 million ha
- Irrig water withdrawal
 - 2217-3185 km³ yr⁻¹ (Siebert et al., 2015)

Source: FAO, 2013

Irrigation Studies

- Previous research has shown that irrigation may affect:
 - Soil moisture
 - Surface energy budget
 - Air temperature
 - Atmospheric moisture
 - Wind patterns
 - Rainfall

 The effects of irrigation on rainfall are most difficult to determine

Source: Boucher et al., 2004 [adapted]

U.S. Midwest July precip anomalies (%)

May-Sept mean irrigation-induced precip (mm)

West Africa

• "Hot spot" for soil moisture-rainfall coupling (Koster et al. 2004)

Simulations with hypothetical irrigated areas

Opposing effects on rainfall

Im et al., 2014

Im and Eltahir, 2014

Motivation for work in East Africa

- West Africa studies are only hypothetical
- No large-scale irrigation schemes in West Africa for validation
- We need observations to substantiate theoretical results

Experimental Design

- Simulations using the MIT regional climate model – MRCM
- Three 30-year simulations from 1979 to 2008 (90 total years)
 - 20-km horizontal grid increments
- Irrigated grid cells are wetted to relative field capacity from July to September

Observational Analysis

- Manaqil Extension (MEX)
 - Rapid expansion from 1958-1962 (blue vertical bar)
- Obs time periods used
 - Pre-MEX- 1930-59
 - Post-MEX 1970-99
- Data sources
 - Gridded data (University of Delaware - UDel)
 - Station data (GHCN)

Alter et al., 2015 (data from Ministry of Water Resources and Electricity in Sudan)

August

16N

14N

12N

Dots Where irrig rainfall > control rainfall in at least 70% of model years

Observed (UDel)

Dots ≥80th percentile of Consistency of Relative Change Index (CRCI)

GHCN

Potential Mechanism

Source: Im et al. 2014

Implications and Future Work

- Negatives
 - Possible feedback loop that challenges hydrological sustainability
- Positives
 - Can improve productivity of existing crops (e.g., Gedaref) or create new areas of cropland
 - Optimize locations of irrigated cropland
- Currently applying same experimental framework for irrigation in central United States

Conclusions

- Simulations and observations agree that irrigation in Gezira:
 - Enhances rainfall around irrigated areas
 - Reduces rainfall over irrigated areas
 - Cools temperature over irrigated areas
- Enhancements in rainfall are consistent
- Negative effects over irrigated area, positive effects in surrounding areas
- Strategic placement of irrigated cropland can be beneficial for economies in Africa and the rest of the world

Source: Visible Earth, NASA