
SC I ENCE ADVANCES | R E S EARCH ART I C L E
CL IMATOLOGY
1Division of Environment and Sustainability, Department of Civil and Environmental
Engineering, TheHongKongUniversityof ScienceandTechnology, Kowloon,HongKong.
2Department of Civil Engineering and Environmental Science, Loyola Marymount
University, Los Angeles, CA 90045, USA. 3RalphM. Parsons Laboratory, Massachusetts
Institute of Technology, Cambridge, MA 02139, USA.
*These authors contributed equally to this work.
†Corresponding author. Email: eltahir@mit.edu

Im, Pal, Eltahir, Sci. Adv. 2017;3 : e1603322 2 August 2017
Copyright © 2017

The Authors, some

rights reserved;

exclusive licensee

American Association

for the Advancement

of Science. No claim to

original U.S. Government

Works. Distributed

under a Creative

Commons Attribution

NonCommercial

License 4.0 (CC BY-NC).
Deadly heat waves projected in the densely populated
agricultural regions of South Asia
Eun-Soon Im,1* Jeremy S. Pal,2* Elfatih A. B. Eltahir3†

The risk associated with any climate change impact reflects intensity of natural hazard and level of human vul-
nerability. Previous work has shown that a wet-bulb temperature of 35°C can be considered an upper limit on
human survivability. On the basis of an ensemble of high-resolution climate change simulations, we project that
extremes of wet-bulb temperature in South Asia are likely to approach and, in a few locations, exceed this critical
threshold by the late 21st century under the business-as-usual scenario of future greenhouse gas emissions. The
most intense hazard from extreme future heat waves is concentrated around densely populated agricultural re-
gions of the Ganges and Indus river basins. Climate change, withoutmitigation, presents a serious and unique risk
in South Asia, a region inhabited by about one-fifth of the global human population, due to an unprecedented
combination of severe natural hazard and acute vulnerability.
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INTRODUCTION
The risk of human illness and mortality increases in hot and humid
weather associated with heat waves. Sherwood and Huber (1) pro-
posed the concept of a human survivability threshold based on wet-
bulb temperature (TW). TW is defined as the temperature that an air
parcel would attain if cooled at constant pressure by evaporatingwater
within it until saturation. It is a combined measure of temperature
[that is, dry-bulb temperature (T)] and humidity (Q) that is always less
than or equal to T. High values of TW imply hot and humid conditions
and vice versa. The increase in TW reduces the differential between hu-
man body skin temperature and the inner temperature of the human
body, which reduces the human body’s ability to cool itself (2). Because
normal human body temperature is maintained within a very narrow
limit of ±1°C (3), disruption of the body’s ability to regulate temperature
can immediately impair physical and cognitive functions (4). If ambient
air TW exceeds 35°C (typical human body skin temperature under
warm conditions), metabolic heat can no longer be dissipated. Human
exposure toTW of around 35°C for even a few hours will result in death
even for the fittest of humans under shaded, well-ventilated conditions
(1).WhileTWwell below 35°C can pose dangerous conditions formost
humans, 35°C can be considered an upper limit on human survivability
in a natural (not air-conditioned) environment. Here, we considermax-
imumdailyTW values averaged over a 6-hour window (TWmax), which
is considered the maximum duration fit humans can survive at 35°C.
HISTORICAL DISTRIBUTION OF MAXIMUM
WET-BULB TEMPERATURE
According to the global historical reanalysis for modern record (1979–
2015) (5), the largest TWmax rarely exceeds 31°C in the current climate.
However, three extensive regions, where values exceed 28°C, are ob-
served: southwest Asia around the Persian/Arabian Gulf and Red Sea,
South Asia in the Indus and Ganges river valleys, and eastern China
(Fig. 1). To identify the precise reasons for high TW, individual studies
need to be performed because of each region’s unique geography and
climate. The underlying reasons why southwest Asia stands out are dis-
cussed by Pal and Eltahir (6), who concluded that futureTWmax around
the Persian/ArabianGulf region is likely to exceed theTW threshold for
human survivability by the end of the century under a business-as-usual
(BAU) scenario of atmospheric greenhouse gas (GHG) concentrations.
In summer 2015, TW in the Bandar Mahshahr, Iran Persian/Arabian
Gulf, reached nearly 35°C, suggesting that the thresholdmay be breached
sooner than projected (7). In this study, we shift our attention to the
region of SouthAsia, here defined as Pakistan,Nepal, India, Bangladesh,
and Sri Lanka. The northern part of this region is the second hottest
after southwest Asia but is more expansive when considering the land
area affected.

Heat waves and their impacts on human health are combined
consequences of high dry-bulb temperatures and humidity (that is,
high TW) and the vulnerability of the population. Many previous
studies have investigated the impacts of anthropogenic climate
change on heat waves and human health (8, 9). However, it is not
until more recently that the combined effects of temperature and hu-
midity have beenmore commonly considered. For example, the Fourth
Assessment Report of the Intergovernmental Panel on Climate
Change (IPCC) (10) when making projections about future heat
waves only considers T. However, the latest IPCC report (11) does
consider the combined effects of T and Q when considering working
conditions, which are projected to worsen considerably in many re-
gions (12, 13). In addition, studies that include the combined effects
at a global scale are largely based on output from climate models with
resolutions on the order of 100 to 200 km (1, 14). Studies that are based
on higher-resolution simulations are generally focused on North
America and Europe (15, 16). However, the most detrimental human
impacts of climate change on heat waves could potentially be those in
developing nations because of the vulnerability of their populations. In
much of India and Pakistan, an apparent rising trend in the frequency
of deadly heat waves has been observed (17–19). For example, severe
heat waves resulting in thousands of deaths to humans and livestock
were reported aroundOdisha (eastern India) in 1998, Andhra Pradesh
in 2003, and Ahmadabad and other parts of Gujarat (western India) in
2010 (20). In particular, the fifth deadliest heat wave in recordedhistory
(21) affected large parts of India and Pakistan, claiming around
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3500 lives in 2015 (22).Wenote that the large positive departure ofmax-
imum temperature from the climatology during the heat wave periods
largely coincides with the areas (particularly in Uttar Pradesh, Bihar, and
Odisha) where TW is projected to approach or exceed the survivability
threshold under the Representative Concentration Pathway 8.5
(RCP 8.5) scenario (see Fig. 2) (23).
IMPACTS OF CLIMATE CHANGE
To study the potential impacts of climate change on human health due
to extreme TW in South Asia, we apply the Massachusetts Institute of
Technology Regional ClimateModel (MRCM) (24) forced at the lateral
and sea surface boundaries by output from three simulations from the
Coupled Model Intercomparison Project Phase 5 (CMIP5) coupled
Atmosphere-Ocean Global Climate Model (AOGCM) experiments
(25). By conducting high-resolution simulations, we include detailed
representations of topography and coastlines as well as detailed physical
Im, Pal, Eltahir, Sci. Adv. 2017;3 : e1603322 2 August 2017
processes related to the land surface and atmospheric physics, which are
lacking in coarser-resolution AOGCM simulations (26). On the basis of
our comparison of MRCM simulations driven by three AOGCMs for
the historical period 1976–2005 (HIST) against reanalysis and in situ
observational data,MRCM shows reasonable performance in capturing
the climatological and geographical features of mean and extreme TW
over South Asia. Furthermore, the mean biases of MRCM simulations
are statistically corrected at the daily time scale to enhance the reliability
of future projections (see Materials and Methods). We project the
potential impacts of future climate change toward the end of century
(2071–2100), assuming two GHG concentration scenarios based on
the RCP trajectories (27): RCP4.5 and RCP8.5. RCP8.5 represents a
BAU scenario resulting in a global CMIP5 ensemble average surface
temperature increase of approximately 4.5°C. RCP4.5 includes mod-
erate mitigation resulting in approximately 2.25°C average warming,
slightly higher than what has been pledged by the 2015 United
Nations Conference on Climate Change (COP21).
Fig. 1. Spatial distribution of highest daily maximum wet-bulb temperature, TWmax (°C), in modern record (1979–2015). Global distributionof TWmax is computed
using ERA-Interim 3-hourly data with 0.75° × 0.75° horizontal resolution. The enlarged domain highlights three distinguishable regions with higher TWmax: southwest Asia
around the Persian/Arabian Gulf and Red Sea, South Asia in the Indus and Ganges river valleys, and eastern China. TWmax values below 27°C are not shown.
2 of 7
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Fig. 2. Histograms of daily maximum wet-bulb temperature, TWmax (°C), and maps of the ensemble averaged 30-year TWmax. (A) The histograms are generated
for the most populous cities in the selected regions for each scenario: HIST (blue), RCP4.5 (green), and RCP8.5 (red). Values within each panel correspond to the 2- and
25-year return period of the bias-corrected annual maxima of TWmax, and the x and y axes indicate TWmax (°C) and the number of occurrences on a logarithmic scale,
respectively. The background image was obtained from NASA Visible Earth. (B to D) The spatial distributions of bias-corrected ensemble averaged 30-year TWmax for each
GHG scenario: HIST (1976–2005) (B), RCP4.5 (2071–2100) (C), and RCP8.5 (2071–2100) (D).
Im, Pal, Eltahir, Sci. Adv. 2017;3 : e1603322 2 August 2017 3 of 7
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On the basis of the simulation results,TWmax is projected to exceed
the survivability threshold at a few locations in the Chota Nagpur
Plateau, northeastern India, and Bangladesh and projected to approach
the 35°C threshold under the RCP8.5 scenario by the end of the cen-
tury overmost of South Asia, including the Ganges river valley, north-
eastern India, Bangladesh, the eastern coast of India, Chota Nagpur
Plateau, northern Sri Lanka, and the Indus valley of Pakistan (Fig.
2). Under the RCP4.5 scenario, no regions are projected to exceed
35°C; however, vast regions of South Asia are projected to experience
episodes exceeding 31°C, which is considered extremely dangerous for
most humans (see the SupplementaryMaterials). Less severe conditions,
in general, are projected for the Deccan Plateau in India, the Himalayas,
and western mountain ranges in Pakistan.

Many urban population centers in South Asia are projected to ex-
perience heat waves characterized by TWmax well beyond 31°C under
RCP8.5 (Fig. 2). For example, in Lucknow (Uttar Pradesh) and Patna
(Bihar), which have respective current metro populations of 2.9 and
2.2 million, TW reaches and exceeds the survivability threshold. In
most locations, the 25-year annualTWmax event in the present climate,
for instance, is projected to become approximately an every year oc-
currence under RCP8.5 and a 2-year event under RCP4.5 (Fig. 2 and
fig. S1). In addition to the increase in TWmax under global warming,
the urban heat island effect may increase the risk level of extreme heat,
measured in terms of temperature, for high-density urban population
exposure to poor living conditions. However, Shastri et al. (28) found
that urban heat island intensity overmany Indian urban centers is low-
er than in non-urban regions along the urban boundary during
daytime in the pre-monsoon summer because of the relatively low veg-
etation cover in non-urban areas.
 on A
ugust 2, 2017
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VULNERABILITY
The geographical locations of the most extreme projected heat waves
in the Indus andGanges river valleys coincide largely with locations of
highly vulnerable human populations in terms of population density,
gross domestic product (GDP) per capita, and agricultural intensity
(Fig. 3). Agricultural workers in these regions spend significant time
working outdoors during the seasons with the highest TW (boreal
spring, summer, and autumn; fig. S2). Under RCP8.5, a small fraction
of the SouthAsian population (~4%) is projected to experienceTWmax

exceeding 35°C by 2100. However, approximately 75% of the popula-
tion is projected to experience TWmax exceeding 31°C, considered
dangerous levels formost humans (6), compared to 15% in the current
climate and 55% under RCP4.5 (Fig. 3). Similarly, the fractional pop-
ulation exposed to the median daily maximum TWmax of 31°C is
projected to increase from essentially zero in the present day to
~30%under RCP8.5 and only 2%under RCP4.5. In terms of fractional
agricultural area affected, the numbers are similar to those of fraction-
al population because most of the populations in these regions live in
rural areas. The difference between the projections for RCP8.5 and
RCP4.5 suggests that the region stands to benefit from significantmit-
igation efforts, such as those pledged by COP21.

To examine the robustness of our estimates of the characteristics of
heat stress, we also investigate the frequency and intensity of severe
heat waves based on the criteria used by the India Meteorological De-
partment, which do not consider the effects of humidity (figs. S3 and
S4). Heat waves characterized by solely maximum temperatures are
projected to significantly increase in both frequency and intensity,
with maximum severity in northwest India and the desert region of
Im, Pal, Eltahir, Sci. Adv. 2017;3 : e1603322 2 August 2017
Pakistan. Combining our analysis based on TWmax and severe heat
wave defined by Tmax, we find that a sizable part of the Indian sub-
continent is likely to experience more frequent and intensified heat
waves and associated physical stress during the extended period
covering the pre-monsoon to monsoon seasons.
POTENTIAL MECHANISMS
The fertile valleys of the Indus and the Ganges, where human popu-
lation is currently in the hundreds of millions, will likely experience
some of the most severe projected hazard from heat waves. Three
independent mechanisms are offered to explain this projection. First,
the monsoon system transports warm and humid air masses into the
Indus and Ganges valleys from the surrounding warm Arabian Sea
and Bay of Bengal. Second, surface elevations in these valleys are gen-
erally lower than 100 m above sea level, and hence, surface air is gen-
erally warmer than surrounding higher-elevation areas. Third, much
of the valleys are irrigated, which tends to enhance TW over irrigated
areas because of modifications in the surface energy balance (29).
These three factors add together to favor higher TW conditions in
the valleys compared to the surrounding regions. Furthermore,
large-scale modes of climate variability indirectly affect the character-
istics of heat waves through teleconnections. The possible linkage be-
tween the El Niño–Southern Oscillation and heat wave variability has
been previously investigated (30). El Niño delays the onset of the Indian
Summer Monsoon, which, in turn, induces more severe and longer-
lasting heat waves in India. Furthermore, most years with abnormal
heat waves in terms of intensity and spatial extent correspond to a year
following an El Niño event (31, 32). We note that the regions identified
with severe heat waves associated with El Niño coincide with the loca-
tions of higher TW in our analysis.
RAMIFICATIONS
Studies of detection and attribution of recent climate change have
found compelling evidence of human influence on regional heat
waves (33), surface specific humidity (34), and temperature- and
moisture-related heat stress (35). These detection/attribution results
lend further credibility to the projected late 21st century increases in
the frequency and magnitude of heat extremes and related heat stress
due to anthropogenic GHGs, which will likely impose significant risk
and negative impact on human health (11). In this regard, our find-
ings have significant implications to the ongoing considerations re-
garding climate change policy. In the absence of serious mitigation,
some of the most severe hazards associated with climate change will
fall on some of the most vulnerable populations. In poorer regions,
such as South Asia, air conditioning is not currently available as a safe
haven to most of the population, increasing the risk of illness and
death related to extreme heat conditions. This disparity raises impor-
tant environmental justice questions beyond the scope of this study.
At the regional scale, India’s GHG emissions have been increasing rap-
idly in recent decades because of rapid economic and population
growth and high dependence on coal used for energy generation. De-
spite their relatively lowGHGper capita emissions, India (andmore so
China) is responsible for much of the recent rise in global emissions.
The findings from this study may present a significant dilemma for
India because the continuation of this current trajectory of rising emis-
sionswill likely impose significant addedhumanhealth risks to some of
its most vulnerable populations.
4 of 7
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MATERIALS AND METHODS
Experimental design
To investigate the future changes in TW in response to anthropogenic
GHG forcing over South Asia, we produced high-resolution regional
projections using theMRCM(24).MRCM is based on theAbdus Salam
International Centre for Theoretical Physics Regional Climate Model
Version 3 (RegCM3) (36) but with several important improvements
(26). In particular, the irrigation module implemented within the
Integrated Biosphere Simulator (IBIS) land surface scheme takes into
account the impact of large-scale irrigation practiced in the agricultural
sector in SouthAsia (fig. S5). In previous studies, we have demonstrated
that the irrigation module of MRCM is suited for climate simulations
representing how irrigation enhances evapotranspiration and affects the
surface energy balance (29, 37).

The simulation domain covers the entire Indian subcontinent and
adjacent Indian Ocean, including the five targeted countries of this
study: India, Pakistan, Bangladesh, Nepal, and Sri Lanka. It is centered
at 79°E and 20.5°Nwith a 25-km grid spacing on a Lambert conformal
Im, Pal, Eltahir, Sci. Adv. 2017;3 : e1603322 2 August 2017
projection. The 25-km grid spacing is fine enough to represent the gen-
eral geographical setting. In particular, it reasonably captures the complex
topography characterized by the sharp gradient of the Himalaya between
the Indo-Gangetic Plain and the Tibetan Plateau (fig. S5), which is a key
factor in accurately simulating the SouthAsianmonsoon andhenceTW.

The surface and lateral boundary conditions used to force MRCM
were taken from three AOGCMs participating in CMIP5 (25): Com-
munity Climate System Model version 4 (CCSM4) (38), Max-
Planck-Institute Earth System Model (MPI-ESM) (39), and Australian
Community Climate and Earth System Simulator (ACCESS) (table S1)
(40). The AOGCM horizontal resolution ranges from approximately
100 to 200 km for the atmosphere and 30 to 100 km for the ocean.
The AOGCMs were selected based on a rigorous evaluation of per-
formance in simulating T and TW over South Asia. More specifically,
the bias and root mean square error of the seasonal mean climatology
and the probability density function of daily time scale data were com-
pared with the European Centre forMedium-RangeWeather Forecasts
Interim reanalysis (ERA-Interim) data (5).
A B C

D E F

Fig. 3. Vulnerability due to population density, poverty, and outdoor working conditions. (A to C) Maps of population density in people/km2 (A), GDP in U.S. dollars
per capita (B), and agricultural land fraction (C). (D to F) Population fraction exposed at least once in the simulations to TWmax (D) and exposed to median of annual
maxima of TWmax (E), and agricultural land fraction (crop and pasture) exposed at least once in the simulations to TWmax (F). Blue, green, and red lines represent the
HIST (1976–2005), RCP4.5 (2071–2100), and RCP8.5 (2071–2100) scenarios, respectively. Data for 2000 population density (43), 2014 GDP (Indian Ministry of Statistics
and Programme Implementation), and 2000 agricultural intensity (44) are regridded onto the MRCM grid.
5 of 7
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For each selected AOGCM, the present-day climate is represented
with historical GHG concentrations for the period 1975–2005 (HIST),
whereas future climate is projected under the RCP trajectories (27) for
the period 2070–2100. To quantify the effect of a range of GHG concen-
trations, two different RCP scenarios, namely, RCP4.5 andRCP8.5, were
adopted. RCP8.5 is a rising concentration pathway leading to 8.5Wm−2

of radiative forcing by 2100 and can be considered a BAU scenario.
RCP4.5 is a stabilization scenario after about 2060, leading to 4.5 W m−2

of radiative forcing by 2100. It represents moderate mitigation effort.
In summary, South Asian regional climate was simulated usingMRCM
forced by three AOGCMs under three GHG concentration scenarios for
a total of nine 31-year simulations. The first year of each simulation was
excluded as a spin-up period, and the analysis was performed based on
the remaining 30 years of simulation.

Extreme TW and T computations with bias correction
For impact studies, it is often desirable to bias correct climate model
simulation results by assuming that the bias in the historical
simulation remains constant in the future projections (41). Doing so
reduces the likelihood that impact assessments are biased by model
deficiencies. Here, we applied the same methodology for bias correc-
tion of simulated TW developed by Pal and Eltahir (6) for the climate
change projections in southwest Asia. TW is computed by the formu-
lation developed by Davies-Jones (42) using instantaneous values sur-
face temperature, humidity, and pressure. Because TW does not
consider the variation of solar radiation assumingmoderately high ra-
diation, it neglects the effects of direct sunlight on heat stress. It can
result in a slight overestimation of heat stress in cloudy days or during
nighttime but underestimation during periods of full sun (14). The
ERA-Interim reanalysis data are considered the best available combined
spatial and temporal representation of observations for the region and
are therefore used for the following bias correction procedure: (i) The
maximum 6-hour average TW and T for each day are computed for
both theMRCMhourly output and theERA-Interim reanalysis 3-hourly
0.75° × 0.75° data, denoted by TWmax and Tmax, respectively. (ii) The
ERA-Interim TWmax and Tmax data are interpolated from the 0.75° ×
0.75° horizontal grid to the 25-kmMRCM grid. (iii) Consistent MRCM
and ERA-Interim climatologies of TWmax and Tmax are computed for
each day of the year on theMRCM25-km grid. (iv) The magnitude of
the bias for each day of the year is estimated by the difference between
30-day running means of the two climatologies. (v) The daily bias is
then applied to the MRCM daily values of TWmax and Tmax for the
present-day and future climates. The corrections for Tmax are on the
order of 1° to 2°C, which is in line with the mean TW bias (fig. S6).

The adjusted values were, in turn, used to compute annual TWmax

andTmaxmaxima andTWmax andTmax histograms at each grid point. To
describe the statistical likelihoodof extremeTWmax andTmax occurrence,
we also computed the return period using an empiricalWeibull ranking.
By comparing the levels of TWmax and Tmax corresponding to the same
return period, we were able to project the future changes in the intensity
and frequency of TWmax and Tmax with respect to the present climate.
The comparison between theRCP4.5 andRCP8.5 scenarios ismeaning-
ful for addressing the potential impact of mitigating GHG emissions.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/3/8/e1603322/DC1
Supplementary Text
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fig. S1. Bias-corrected annual TWmax return period for the most populous cities in the selected
regions for each scenario.
fig. S2. Seasonal cycle of the 30-year average monthly maximum TWmax after bias correction
for the most populous cities in the selected regions for each scenario.
fig. S3. April-May-July climatological frequency (days/year) of severe heat wave calculated
using daily maximum temperature derived from MRCM historical simulation (1976–2005) and
RCP4.5 and RCP8.5 projections (2071–2100).
fig. S4. As in fig. S3 but for intensity (°C) of severe heat wave.
fig. S5. Geographical settings and typical climatological conditions of the South Asian
monsoon.
fig. S6. Spatial distribution of June-July-August 30-year (1982–2011) climatology of TW and
TWmax (°C) for ERA-Interim and the MRCM simulations driven by ERA-Interim.
fig. S7. Spatial distribution of June-July-August 30-year climatology of TW and TWmax (°C) for
ERA-Interim (1979–2008) and the MRCM ensemble of the three simulations (1976–2005)
driven by three AOGCMs (CCSM4, MPI-ESM, and ACCESS).
fig. S8. Spatial distribution of 95th percentile exceedance of TWmax (days/year) from
ERA-Interim (1979–2008) and the MRCM ensemble of simulations (1975–2005) driven by three
AOGCMs (CCSM4, MPI-ESM, and ACCESS).
fig. S9. Histogram of TWmax (°C) at three stations (Punjab, Patna, and Lucknow) from in situ
observations (1979–2008) and the MRCM simulations (1976–2005) driven by three AOGCMs
(CCSM4, MPI-ESM, and ACCESS).
fig. S10. Histograms of daily maximum temperature, Tmax (°C), and maps of the ensemble
averaged 30-year Tmax.
fig. S11. Bias-corrected annual Tmax return period for the most populous cities in the selected
regions for each scenario.
fig. S12. Conversion tables between NOAA National Weather Service Heat Index and TW.
table S1. Horizontal resolution of the atmospheric and ocean components of the three
AOGCMs used in this study.
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