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Abstract 

Downstream hydraulic geometry equations provide insight into the equilibrium 

tendencies of natural rivers. Numerous field studies have demonstrated that channel cross-section 

averaged velocity is nearly uniform in a downstream direction. Here, we present a simple 

theoretical framework that attempt to explain the near uniformity of average velocity in the 

downstream direction for basins that are near equilibrium with respect to sediment fluxes. 

Assuming that at equilibrium, tractive force, or average boundary shear, is uniform throughout a 

river network we predict that channel hydraulic radius scales with discharge to the – q power, 

where q is the scaling exponent in the corresponding relationship between channel slope and 

discharge. Assuming flow is locally uniform, we apply the Manning equation to predict that 

average velocity scales with discharge to the – q/6 power. This predicted exponent would 

typically fall in the range between 0.05 and 0.1 which implies near uniformity in the spatial 

distribution of velocity in natural rivers. We compare predictions from this theory to field 

observations. 

(Key Words: spatial distribution velocity, hydraulic geometry, basin geomorphology) 

 
1. Introduction 

Local channel cross-section properties such as flow width, depth, and velocity, as well as 

channel bed-slope have frequently been parameterized as power functions of discharge. Such an 
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approach has been used to describe these properties locally for varying discharges, and 

downstream for a discharge of constant frequency or geomorphic significance. The former 

approach has come to be known as at-a-station hydraulic geometry while the latter 

parameterization was termed downstream hydraulic geometry by Leopold and Maddock [1953]. 

The downstream hydraulic geometry equations most frequently discussed are, 

 0
bw c Q=  (1) 

 1
fh c Q=  (2) 

 2
mu c Q=  (3) 

 3S c Qq=  (4) 

where w is the channel top width, h is the hydraulic depth, u is the cross-section averaged 

velocity, S is the local channel bed-slope, and Q is discharge. It follows from continuity that the 

coefficients, c0, c1, and c2 must multiply to unity, while the exponents, b, f, and m must sum to 

unity. Although a degree of non-linearity exists between upstream drainage area, A, and 

discharge [Knighton,1998], we assume A serves as a surrogate for a channel-forming discharge. 

Equations (1) through (4) can then be reformulated with A replacing Q. Figure 1 is a conceptual 

diagram of the downstream hydraulic geometry equations, and the meanings of their exponents. 

Within the context of these hydraulic geometry equations, throughout the remainder of the paper 

we will use the terms channel forming discharge and drainage area interchangeably. 

Numerous field studies have quantified downstream hydraulic geometry parameters for 

varying hydroclimatic, geologic, and tectonic contexts [e.g., Lacey, 1929; Leopold and Maddock, 

1953; Nixon, 1959; Brush, 1961; Simons and Albertson, 1963; Langbein, 1964; Kellerhals, 1967; 

Emmett, 1975; Rundquist, 1975; Charlton et al., 1978; Mahmood, et al., 1979; Bray, 1982; 

Andrews, 1984; Hey and Thorne, 1986; Montgomery and Gran, 2001; Merritt and Wohl, 2003]. 
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Although variability in the magnitude of the parameter b in Equation (1) exists, b tends toward a 

value of 0.5, while f is usually observed to be around 0.4. These field investigations for networks 

representing a range of conditions has shown that m typically varies between 0.08 and 0.20. In a 

notable study, Pilgrim [1977] summarized values of m for seven field studies throughout the 

United States. The absolute magnitude of m indicates a relatively mild dependence of cross-

section averaged velocity to discharge in a downstream direction, while when compared to b and 

f, the magnitude of m indicates that changes in channel width and depth downstream are 

relatively more dramatic than changes in cross-section averaged velocity.  

Previous work attempting to predict the magnitudes of the downstream hydraulic 

geometry parameters theoretically and explain their remarkable consistency in varying 

hydroclimatic, tectonic, and sedimentary environments have typically adopted one or more 

underlying principles governing channel network self-organization. For instance, Singh et al. 

[2003] derive four classes of downstream hydraulic geometry equations based on principles of 

maximum entropy production and minimum energy dissipation in the channel network. Huang, 

et al. [2002] assume the principle of least action to derive stable channel dimensions for alluvial 

channels. Julien and Wargadalam [1995] conducted a three-dimensional stability analysis for 

noncohesive sediments, solving four governing equations to define the hydraulic geometry 

relations of alluvial rivers. Li et al. [1976] used equations describing channel morphologic 

response in an attempt to derive both at-a-station and downstream hydraulic geometry equations. 

Parker [1979] used an approach of downstream momentum transfer to resolve the paradox of a 

stable channel with an active bed, while Chang [1980] applied the principle of minimum stream 

power in other theoretical efforts to the derive the hydraulic geometry relations. In their 

landmark work on downstream hydraulic geometry, Leopold and Maddock [1953] used a 
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minimum variance approach to derive the magnitudes of the downstream hydraulic geometry 

exponents.  

Here, we present a relatively simple theoretical framework to explain the relatively mild 

dependence of cross-section averaged velocity on discharge in a downstream direction for 

homogeneous basins, making only an assumption of basin equilibrium. For such basins, we 

argue that the near uniformity in the spatial distribution of cross-section averaged velocity arises 

because of the offsetting effects of increasing discharge downstream and channel cross-sectional 

geometry adjustment to convey the associated increase in sediment load.  

 

2. Theory 

2.1 Theoretical framework  

In nature, m in Equation (3) has been observed to fall in a relatively narrow range 

between approximately 0.08 and 0.20 which suggests that cross-section averaged velocity 

depends only mildly on discharge in a downstream direction. Field and theoretical studies 

demonstrate that this observation holds across varying hydroclimatic and geologic settings and 

for a range of channel bed and bank roughness (Table 1). Here we outline a conceptual 

framework to explain the mild dependence of channel velocity to discharge in a downstream 

direction. 

We consider a conceptual watershed exhibiting homogeneous sedimentary material that 

exists in an equilibrium which we define to be a state in which the sediment carried at any 

location along the channel network is equal to the material delivered to the basin through 

tectonic uplift. At any point along the channel network the change in elevation can be described 

as [e.g., Kirkby, 1971], 
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 S
dz U f
dt
= - ,  (5) 

where z is the elevation, U is the tectonic uplift rate, and fS is the flux per unit watershed area of 

sediment out of the basin. FS is comprised of the sediment delivered in the channel from upstream 

and the sediment removed through local erosion. For a network in equilibrium the left-hand side 

of Equation (5) is zero and the outgoing sediment flux is balanced by input due to tectonic uplift 

at any point in the network. Then for transport limited conditions, in terms of volumetric 

sediment fluxes, the outgoing sediment flux along the channel network is equal to the fluvial 

sediment transport capacity while the amount of material input to the channel is the time-

invariant spatially uniform uplift rate integrated over the watershed area. In a numerical 

landscape evolution model Willgoose [1991] expressed the capacity to transport sediment in the 

channel as a function of channel slope and upstream drainage area, 

 n pUA S Ab= , (6) 

where b is a proportionality constant, and n and p are exponents. If the uplift rate, U, is constant 

in time and uniform in space then the channel slope obeys power law scaling in area [Willgoose, 

1991], 

 
1 p
nS A Aq
-

! !  . (7) 

Note that Equation (7) is a restatement of Equation (4), assuming that the contributing basin area 

is a surrogate fluvial discharge. We will refer to q as the slope-area parameter. The behavior 

predicted by Equation (7) has been observed in channel networks in a variety of geologic and 

hydroclimatic setting [e.g., Tarboton et al., 1989]. Furthermore, Rodriguez-Iturbe and Rinaldo 

[1997] discuss the implications of the observed power-law slope-area scaling in natural river 

networks. 
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Since U is assumed constant in time and uniform in space, Equation (6) is valid 

everywhere in the channel network and by extension every point in the channel network is at 

equilibrium. Therefore, at any cross-section along the channel network there can be no net 

erosion/deposition of sediment.  

A homogeneous watershed not in equilibrium will exhibit locations within where erosive 

forces systematically exceed resisting forces. Given sufficient time and stationary driving forces, 

cross-sectional width, depth, and, by association, the average velocity will adjust at each location 

along the channel network such that the constraint of no net erosion or deposition is satisfied. In 

an engineering context, Chow [1959] envisioned the design of stable channels to be a balance 

between the tractive force and the permissible tractive force. The latter is the maximum erosive 

force that a cross-section can sustain without erosion of the channel margin. For homogeneous 

watersheds approaching equilibrium, we assume that the channel network tends toward a state in 

which the tractive force, or boundary shear,  

 RSt g= , (8) 

is constant everywhere in the network. Persistent departure from this condition at any location 

within the network should lead to transient landscape evolution towards equilibrium. In Equation 

(8)  t is the tractive force or average boundary shear stress, R is the hydraulic radius, and S is 

taken as the local channel bed-slope.  

                       Although channel material is almost certainly non-uniform along natural rivers 

[e.g., Rice, 1994], work by Pitlick and Cress [2002] demonstrates only a mild downstream 

change in bankfull shear stress for a 100 km reach of the Colorado River which exhibits a mild 

downstream fining trend. They also observed bankfull dimensionless shear stress, tb
*, to be less 

dependent on along-stream distance than bankfull shear stress over the same reach. tb
* is the 
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average shear at the bankfull discharge normalized by a characteristic grain size, ds, and is 

computed as (RbS)/(1.65ds) for quartz sediment, where Rb is the hydraulic radius at the bankfull 

discharge. Figures 8 and 10 in the work of Pitlick and Cress [2002] seems to support the 

assertion that, channel cross-section adjustment occurs in such a way that shear stress tends to 

remain constant in a downstream direction.  

             If Equation (8) holds in approximation throughout a channel network, substituting 

Equation (7) into equation (8), we find that the hydraulic radius must exhibit power law scaling 

with drainage area, 

 R A q-! . (9) 

 

We further assume that flow is locally uniform at each point along the channel network, 

and that the cross-section average velocity can be related to the hydraulic radius and bed-slope 

through the Manning equation, 

 2 3 1 2

0

1u R S
n

= , (10) 

where n0 is the Manning roughness coefficient. Assuming that the flow resistance is due only to 

grain roughness we treat n0 as a parameter which does not vary in a downstream direction 

because the bed material is assumed uniform throughout the network. We can then consider the 

downstream trend in velocity  by substituting Equations (7) and (9) into (10). This yields, 

 ( ) ( )2 3 1 2 6u A A Aq q q- -! ! . (11) 

Equation (11) expresses the downstream change in a local hydraulic property as a 

function of basin-scale geomorphic attributes. The theoretical framework developed here 

suggests the increase in discharge in a downstream direction is nearly balanced by an adjustment 
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in cross-sectional width, depth, and slope such that there is no net erosion or deposition at the 

channel-forming discharge. The net effect of these trends in discharge and channel cross-section 

adjustment downstream is a relative insensitivity of cross-section averaged velocity to discharge.  

Note that to the extent that there is a weak trend in velocity downstream, if shear stress is 

constant throughout the network, then the product of shear stress and velocity, which defines 

specific stream power, should also be weakly dependent on location within the channel network. 

Hence our approach differs from the concept of a uniform distribution of stream power assumed 

in the derivation of the optimal channel network framework set forth by Rodriguez-Iturbe et al. 

[1992], and applied and tested by Molnar and Ramirez [1998a,b] for a small watershed in 

Mississippi. 

 

2.2 Methods of comparison to observed data 

Several implications of the theoretical framework described in the previous section allow 

us to compare this framework against observations to test the validity of the framework. 

Equation (9) suggests that hydraulic radius scales with the negative of the slope-area parameter 

in a downstream direction. By definition, the channel hydraulic radius is a function of local 

channel properties, 

 csAR
P

= , (11) 

where Acs is the channel cross-section area, and P is the wetted perimeter. For assumed cross-

sectional geometries, the hydraulic radius can be expressed explicitly as a function of the top 

width, w, and the flow depth, h. The three most simple cross-sectional geometric configurations 

are rectangular, triangular, and trapezoidal geometries, which can be expressed as functions of 

the top width and flow depth as follows: 
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Rectangular: 

 
2

whR
w h

=
+

. (12) 

Triangular: 

 
2 24 1 4

whR
w h

=
+

. (13) 

Trapezoidal: 

 ( )
2 2 1

ss

ss ss

w z h h
R

w z h h z
-

=
- + +

 (14) 

zss in Equation (14) is the inverse of the channel side-slope. Further, for wide rectangular 

channel cross-sections (i.e., w h! ) R h» .   

Substituting the hydraulic geometry equations for flow width and depth (Equations (1) 

and (2)) into the equations for the hydraulic radius of an assumed cross-sectional shape 

(Equations (12)-(13)) we can determine how hydraulic radius should scale with area according to 

field observations. For example, we immediately see that for wide, rectangular cross-sections, 

 1
fR h c A» » , (15) 

and, 

 fq » - . (16)  

The exponent of this scaling relationship represents an estimate q obtained independently 

of the slope-area parameter itself, which is compared to the field measured values of q  from 

available field studies.  

Equation (11) implies that our theoretical description relates the velocity equation 

exponent, m, to the slope-area parameter, q, as, 
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6

m q
= - .  (17) 

The previously described estimate of q obtained from the hydraulic geometry equations 

for flow width and depth, and assumed cross-sectional geometries are then used to estimate the 

velocity equation exponent, m. These estimates of m are also compared to published values in 

the following section. 

 

3. Comparison with observations 

Values of the exponents observed through field measurement, bo and fo, from seven field 

studies of natural rivers were used to compute values of q, denoted qc, by assuming one of three 

different cross-sectional geometries and then substituting Equations (1) and (2) into the 

appropriate equation for the hydraulic geometry (Equations (12)-(14)). Comparing qc to values of 

q obtained directly through field inspection, qo, we find that the qc are able to approximate qo 

relatively well, although there are notable counterexamples  to this finding (Table 2). We also 

note that qc appears more sensitive to the magnitude of fo than to the magnitude of bo. Using these 

same field data, we computed values of m, denoted mc, by substituting the values of qc shown in 

Table 2 into Equation (17). When compared to the values of m measured directly from field 

inspection, mo, the values of mc typically underestimate the measured values by a factor of 

approximately two (Table 3). In the following section, we describe a few probable reasons for 

observed discrepancies between qc and qo, as well as m and mo.  

 

4. Discussion and Conclusions 



11 

The theoretical framework we have outlined in this paper made several simplifying 

assumptions regarding the state of a basin being considered. The conceptual system for which we 

develop the theoretical framework is in an equilibrium in which the material delivered through 

tectonic uplift is balanced by the sediment eroded from hillslopes and transported out of the 

channel network. Such an equilibrium represents a balance between the climatic and tectonic 

forces driving landscape evolution and the resistance of the material that composes the basin. 

Whipple [2001] argues that estimated minimum time scales of landscape response to climatic and 

tectonic perturbations are longer than the observed timescales of climatic fluctuation in the 

Quaternary, making the equilibrium topographies assumed here unlikely in natural landscapes.  

We also assume that sediment size and erodibility is uniform throughout space and 

constant in time, and that sufficient supply of sediment exists at all times to satisfy the sediment 

transport capacity at any point in the basin. The sediment transport capacity relation presented in 

Equation (6) does not account for threshold dependent detachment-limited behavior, however, 

which is likely to dominate natural landscapes [Howard, 1994]. Detachment limited behavior 

would presumably change the values of n and p in Equation (6), yielding a different value of the 

slope-area parameter. 

To obtain Equation (7) by solving Equation (6) explicitly for the channel slope, we made 

the assumption that the tectonic uplift was uniform in space and constant in time. Observational 

evidence suggests that tectonic uplift rates can be episodic through time and spatially 

nonuniform [e.g., Wegmann and Pazzaglia, 2002]. Episodic and spatially-varying tectonism 

would tend to decrease the likelihood that a landscape would attain an equilibrium state. 

Channel networks in mountain drainages often demonstrate significant downstream 

trends in grain size [e.g., Rice, 1994] and, by extension, grain resistance. Downstream trends in 
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streambed substrate size have also been shown to be punctuated at tributaries junctions and at 

local sites of coarse colluvium input associated with landslides and debris flows [Rice, 1998]. 

Significant changes in substrate size distribution along a river may be associated with significant 

non-uniformity in values of critical shear stress. Departures from uniform spatial distributions of 

shear stress would imply that R scales with area to some power different from q. Even with 

uniform bed material and grain roughness in a downstream direction, flow resistance is likely to 

change downstream due to changes in form roughness associated with meandering, secondary 

flows, or large woody debris [Leopold et al., 1964]. Either of these two cases would have the 

effect of making n0 in Equation (9) vary along a channel, meaning that the downstream trend in 

velocity would scale with area to some power different from -q/6. For changing roughness 

associated with punctuated downstream fining or large woody debris, the channel roughness 

along the channel network would be a discontinuous function of drainage area. 

Cross-section averaged velocity scales with discharge to the –q/6 power only when flow 

is locally uniform, a condition which arises when the gravitational gradient and frictional 

resistance are in balance. For realistic values of q, the assumption of uniform flow in the network 

predicts that m varies between approximately 0.05 and 0.10. Yet, observations suggest that m is 

closer to being in the range of 0.10 to 0.15, and therefore that a degree of local non-uniformity in 

open channel flow exists and can account, in part, for the discrepancy between observed and 

predicted values of m.  

Downstream hydraulic geometry parameters in Equations (1)-(4) are typically determined 

through field measurement of the flow width and depth at a geomorphically significant event, 

such as the bankfull discharge. The magnitude of this discharge at each location along a river is 

frequently obtained directly through known stage-discharge relationships, computed through an 
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equation similar in form to the Manning equation, or estimated flood frequency analysis. The 

cross-section averaged velocity corresponding to this discharge is then computed through the 

equation of continuity. Hydraulic geometry parameters are then determined by regressing the 

flow width, depth and velocity against either the discharge at which they are applicable or the 

upstream contributing area at their location of measurement. Field determination of a 

geomorphically significant discharge in natural channels is made difficult by a lack of, or 

inconsistency of field evidence to quantify the flow width and depth, and a corresponding 

roughness for this discharge, if it is required. Determination of discharge magnitudes from flood-

frequency analysis, on the other hand, relies on flow records of finite duration that are sometimes 

missing observations, assumptions of the return period of an event of geomorphic significance, 

and simplifying statistical assumptions about climate and the rainfall-runoff response of the 

basin. The methods by which the discharges of interest are obtained contribute to variance in the 

downstream hydraulic geometry parameters which is not captured in Equations (1)-(4). 

To conclude, we have presented here a simple theoretical framework to describe the 

observed near uniformity in the spatial distribution of velocity in natural channels. Our 

framework is based on a conceptual basin having uniform materials throughout that exists in an 

equilibrium in which sediment fluxes into and out of the basin are balanced. Further, in order to 

describe sediment transport as a power function of channel slope and drainage area, we assumed 

that tectonic uplift was approximately uniform in space and constant in time. Although observed 

basins frequently depart from these assumptions, comparing theoretical and observed values of  

exponent of hydraulic radius, R, demonstrates that our framework can capture the signal of the 

downstream decrease in slope in the downstream adjustment of channel cross-sectional form. 

However, estimated values of m typically departed from observed values by a factor of 
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approximately two, which we attribute, in part, to uncertainties in measuring and estimating the 

hydraulic geometry parameters and the use of a constant Manning roughness. Finally, in a 

departure from previous theoretical studies of hydraulic geometry, the framework we have 

developed assumes no underlying principles directing the evolution of channel networks toward 

a state which must satisfy constraints on properties such as stream power or entropy production. 

 

Notation 

A upstream drainage area (km2). 

Acs channel cross-sectional area (m2). 

b exponent. 

bo exponent obtained through field inspection. 

c0 coefficient. 

c1 coefficient. 

c2 coefficient. 

c3 coefficient. 

ds characteristic substrate size. 

f exponent. 

fo exponent obtained through field inspection. 

fs outgoing sediment flux. 

h flow depth. 

m exponent. 

mc exponent computed from bo and fo. 

mo exponent observed through field inspection.  
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n exponent. 

n0 Manning roughness coefficient. 

p exponent. 

P cross-sectional wetted perimeter (m). 

Q discharge (m3/s). 

R cross-sectional hydraulic radius (m).  

S channel bedslope. 

t time. 

u cross-sectional averaged velocity (m/s). 

U tectonic uplift rate. 

w channel flow top width (m). 

z elevation (m). 

zss inverse of cross-sectional side slope. 

b coefficient. 

g specific weight of water-sediment mixture (N/m3). 

q slope-area parameter. 

qc slope-area parameter computed from bo and fo. 

qo slope-area parameter obtained through field inspection. 

t average boundary shear stress (Pa). 

tb
* bankfull dimensionless shear stress. 
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Table 1: Summary of exponents of downstream hydraulic geometry equations.  

Author(s) Location bo fo mo qo 
Leopold and Maddock (1953)* United States – gauged rivers 0.5 0.4 0.1  

Brush (1961) Appalachians 0.55 0.36 0.09  
Langbein (1965) Theoretical: minimum variance 0.50 0.38 0.13 -0.55 
Kellerhals (1967) Western Canada 0.50 0.40 0.10 -0.10 
Emmett (1975) Upper Salmon River, Idaho 0.56 0.34 0.12  

Rundquist (1975) Rivers and canals with gravel and sand beds 0.52 0.32 0.16 -0.30 
Li et al. (1976) Theoretical: Threshold theory 0.46 0.46 0.08 -0.46 

Charlton et al. (1978) Britain 0.45 0.40 0.15 -0.24 
Parker (1979) Theoretical: momentum-transfer 0.50 0.42 0.08 -0.41 
Chang (1980) Theoretical: minimum stream power 0.47 0.42 0.11  
Bray (1982) Alberta 0.53 0.33 0.14 -0.34 

Andrews (1984) Colorado: thick bank vegetation 0.48 0.37 0.14 -0.44 
 Colorado: thin bank vegetation 0.48 0.38 0.14 -0.41 

Hey and Thorne (1986) Britain 0.45 0.35 0.20 -0.20 
Merritt and Wohl (2003) Yuma Wash, Arizona 0.78 0.15 0.14   

* - Authors only report one significant figure 
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Table 2: Values of qc and qo, for seven field studies of natural rivers. 

        Rectangular 
geometry 

Triangular 
geometry 

Trapezoidal 
geometry   

    bo fo qc qo 

Kellerhals (1967) Western Canada 0.50 0.40 -0.41 -0.40 -0.41 -0.10 

Rundquist (1975) Rivers and canals with 
gravel and sand beds 0.51 0.32 -0.33 -0.32 -0.33 -0.30 

Charlton et al. 
(1978) Britain 0.45 0.40 -0.41 -0.40 -0.40 -0.24 

Bray (1982) Alberta 0.53 0.33 -0.33 -0.33 -0.33 -0.34 

Andrews (1984): 
thick bank veg. Colorado 0.48 0.37 -0.38 -0.37 -0.38 -0.44 

Andrews (1984): 
thin bank veg. Colorado 0.48 0.38 -0.39 -0.38 -0.39 -0.41 

Hey and Thorne 
(1986) Britain 0.45 0.35 -0.40 -0.35 -0.36 -0.20 
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Table 3: Values of mc and mo, for seven field studies of natural rivers. 

        Rectangular Triangular Trapezoidal   
    bo fo mc mo 

Kellerhals (1967) Western Canada 0.50 0.40 0.07 0.07 0.07 0.10 

Rundquist (1975) Rivers and canals with 
gravel and sand beds 0.51 0.32 0.06 0.05 0.06 0.16 

Charlton et al. 
(1978) Britain 0.45 0.40 0.07 0.07 0.07 0.15 

Bray (1982) Alberta 0.53 0.33 0.06 0.06 0.06 0.14 

Andrews (1984) - 
thick bank veg Colorado 0.48 0.37 0.06 0.06 0.06 0.14 

Andrews (1984) - 
thin bank veg Colorado 0.48 0.38 0.07 0.06 0.07 0.14 

Hey and Thorne 
(1986) Britain 0.45 0.35 0.07 0.06 0.06 0.20 
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FIGURE CAPTIONS 

Figure 1. A schematic representation of the downstream hydraulic geometry equations. The 

x-axis represents discharge (Q) or basin area (A) on a logarithmic scale. Channel 

top width (w) is the solid black line, flow depth (h) is represented by the long 

dashes, cross-section averaged velocity (u) is shown with small dashes, and 

channel slope (S) is shown as a dash-dot line. The values of the hydraulic 

geometry parameters, b, f, and m are 0.5, 0.4, and 0.1 respectively following 

Leopold and Maddock (1953). The value of the slope-area parameter (q) is -0.5 

and represents a theoretical value for n = p = 2 in Equation (7). 
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Figure 1. A schematic representation of the downstream hydraulic geometry equations. The x-
axis represents discharge (Q) or basin area (A) on a logarithmic scale. Channel top width (w) is 
the solid black line, flow depth (h) is represented by the long dashes, cross-section averaged 
velocity (u) is shown with small dashes, and channel slope (S) is shown as a dash-dot line. The 
values of the hydraulic geometry parameters, b, f, and m are 0.5, 0.4, and 0.1 respectively 
following Leopold and Maddock (1953). The value of the slope-area parameter (q) is -0.5 and 
represents a theoretical value for n = p = 2 in Equation (7). 
 


